Skip to main content

Effects of Interagent Communications on the Collective

  • Chapter
Collectives and the Design of Complex Systems

Summary

Based on a recently introduced networked multiagent game [2], we study how agent-agent communications across a complex social network can affect the evolution of the collective during multiple iterations of the game. We show that the information obtained from the social network local to the agent can override the global information source and thus completely change the evolution of the collective compared to the nonnetworked situation. In addition, we show that when trait diversity is low, namely when the agents' action space is severely limited, the overall stability of “leader agents” is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert and A.-L. Barabási. Statistical Mechanics of Complex Networks, Rev. Mod. Phys. 74, 47 (2002).

    Article  MATH  Google Scholar 

  2. M. Anghel, Z. Toroczkai, K. E. Bassler, and G. Korniss. Competition-Driven Network Dynamics: Emergence of a Scale-Free Leadership Structure and Collective Efficiency, Phys. Rev. Lett. 92, 058701 (2004)

    Article  Google Scholar 

  3. B.W. Arthur. Inductive Reasoning and Bounded Rationality, Am. Econ. Rev. 84(2), 406 (1994).

    Google Scholar 

  4. D. Challet, Modelling markets dynamics: Minority games and beyond. Ph.D. Thesis (2000).

    Google Scholar 

  5. D. Challet and M. Marsili. Phase transition and symmetry breaking in the minority game, Phys. Rev. E 60, 6271 (1999).

    Article  Google Scholar 

  6. D. Challet and Y.-C. Zhang. Emergence of cooperation and organization in an evolutionary game, Physica A 246, 407 (1997).

    Article  Google Scholar 

  7. M. A. R. de Cara, O. Pla, and F. Guinea. Competition, efficiency and collective behavior in the “El Farol” bar model Eur.Phys. J. B 10, 187 (1999).

    Article  Google Scholar 

  8. V. M. Eiguiluz and M. G. Zimmermann. Transmission of Information and Herd Behavior: An Application to Financial Markets, Phys. Rev. Lett. 85, 5659 (2000).

    Article  Google Scholar 

  9. E. M. Jin, M. Girvan, and M. E. J. Newman. Structure of growing social networks, Phys. Rev. E 64, 046132 (2001).

    Article  Google Scholar 

  10. N. F. Johnson, M. Hart, and P. M. Hui. Crowd effects and volatility in markets with competing agents, Physica A 269, 1 (1999).

    Article  Google Scholar 

  11. L. P. Kaelbing, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey, J. Artif. Intell Res. 4, 237 (1996).

    Google Scholar 

  12. T. Kalinowski, H.-J. Schulz, and M. Birese. Cooperation in the Minority Game with local information, Physica A, 277, 502 (2000).

    Article  Google Scholar 

  13. R. Manuca, Y. Li, R. Riolo, and R. Savit. The structure of adaptive competition in minority games, Physica A 282, 559 (2000).

    Article  MathSciNet  Google Scholar 

  14. S. Milgram. Small-World problem, Psychol. Today 2, 61 (1967).

    MathSciNet  Google Scholar 

  15. M. E. J. Newman, Models of the small world, J. Stat. Phys. 101, 819 (2000).

    Article  MATH  Google Scholar 

  16. M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359, 826 (1992).

    Article  Google Scholar 

  17. M. Paczuski, K. E. Bassler, and A. Corral. Self-organized networks of competing Boolean agents, Phys. Rev. Lett. 84, 3185 (2000).

    Article  Google Scholar 

  18. R. Savit, R. Manuca, and R. Riolo. Adaptive Competition, Market Efficiency, and Phase Transitions, Phys. Rev. Lett. 82, 2203 (1999).

    Article  Google Scholar 

  19. B. Skyrms and R. Pemantle. A dynamic model of social network formation, Proc. Natl. Acad. Sci. USA, 97, 9340 (2000).

    Article  MATH  Google Scholar 

  20. F. Slanina. Harms and benefits from social imitation, Physica A, 299, 334 (2000).

    Article  Google Scholar 

  21. D. J. Watts, Small Worlds (Princeton, NJ: Princeton University Press, 1999).

    Google Scholar 

  22. D.J. Watts and S. H. Strogatz. Collective dynamics of’ small-world’ networks, Nature 393, 440 (1998).

    Article  Google Scholar 

  23. D. H. Wolpert and K. Turner, Optimal payoff functions for members of collectives, Advances in Complex Systems, 4(2/3) 265 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toroczkai, Z., Anghel, M., Korniss, G., Bassler, K.E. (2004). Effects of Interagent Communications on the Collective. In: Tumer, K., Wolpert, D. (eds) Collectives and the Design of Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8909-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8909-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6472-9

  • Online ISBN: 978-1-4419-8909-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics