Faster-than-light propagations and their applications

  • Raymond Y. Chiao
  • Claus Ropers
  • Daniel Solli
  • Jandir M. Hickmann


Recent experiments have confirmed our predictions that the group velocity of light pulses propagating in transparent optical media can exceed c. In electronics, the causality principle does not forbid negative group delays of analytic signals in electronic circuits, in which the peak of an output pulse leaves the exit port of a circuit before the peak of the input pulse enters the input port. In condensed matter physics, negative transmission times of atoms are possible through superfluid helium slabs and through atomic BECs. Relativity is not violated by these phenomena.


Wave Packet Group Velocity Transmission Time Group Delay Helium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. 1.
    R. Y. Chiao and A. M. Steinberg, in Progress in Optics, edited by E. Wolf, Vol. XXXVII, (Elsevier, Amsterdam, 1997), p. 347.Google Scholar
  2. 2.
    B. Segev, P. W. Milonni, J. F. Baab, and R. Y. Chiao, Phys. Rev. A 62, 022114 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, Phys. Rev. Lett. 86, 3925 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    Wave Propagation and Group Velocity by L. Brillouin (Academic Press, New York, 1960).MATHGoogle Scholar
  5. 6.
    L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000); A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).ADSCrossRefGoogle Scholar
  6. 7.
    R. Y. Chiao, Phys. Rev. A 48, R34 (1993); A. M. Steinberg and R. Y. Chiao, Phys, Rev. A 49, 2071 (1994); E. L. Bolda, J. C. Garrison, and R. Y. Chiao, Phys. Rev. A 49, 2938 (1994); R. Y. Chiao in Amazing Light: A Volume Dedicated to Charles Hard Townes on his 80th Birthday edited by R. Y. Chiao (Springer Verlag, New York, 1996), p. 91; R. Y. Chiao and A. M. Steinberg, in the Proceedings of the Nobel Symposium No. 104 held in Gimo, Sweden on June 13–17, 1997 on ‘Modern Studies of Basic Quantum Concepts and Phenomena,’ edited by E. B. Karlsson and E. Braendas, Physica Scripta T76, 61 (1998).ADSCrossRefGoogle Scholar
  7. 8.
    Quantum Electrodynamics by R. P. Feynman (W. A. Benjamin, New York, 1961), p, 75. The zigzag process of Fig. 4(b) involves a fermionic system in a microscopic effect. Bosonic systems allow macroscopic effects, which can arise because they can exhibit off diagonal long range order with little decoherence. In Compton scattering also, there is a process in which a photon leaves the scattering region before it enters. We thank C. McCormick for pointing this out to us.Google Scholar
  8. 9.
    T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).ADSCrossRefGoogle Scholar
  9. 10.
    E. P. Wigner, Phys. Rev. 98, 145 (1955).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 11.
    A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993); A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 51, 3525 (1995).ADSCrossRefGoogle Scholar
  11. 12.
    C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).ADSCrossRefGoogle Scholar
  12. 13.
    S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982); 49, 1293.ADSCrossRefGoogle Scholar
  13. 14.
    B. Segard and B. Macke, Phys. Lett. A 109, 213 (1985).ADSCrossRefGoogle Scholar
  14. 15.
    C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).ADSCrossRefGoogle Scholar
  15. 16.
    M. W. Mitchell and R. Y. Chiao, Phys. Lett. A 230, 133 (1997); M. W. Mitchell and R. Y. Chiao, Am. J. Phys. 66, 14 (1998).ADSCrossRefGoogle Scholar
  16. 17.
    J. C. Garrison, M. W. Mitchell, R. Y. Chiao, E. L. Bolda, Phys, Lett. A 245, 19 (1998).ADSCrossRefGoogle Scholar
  17. 18.
    Microelectronic circuits by A. S. Sedra and K. C. Smith (4th edition, Oxford University Press, Oxford, 1998).Google Scholar
  18. 19.
    P. A. Packan, Science 285, 2079 (1999).CrossRefGoogle Scholar
  19. 20.
    Y. Taur, IEEE Spectrum 36, 25 (1999).CrossRefGoogle Scholar
  20. 21.
    L. Geppert, IEEE Spectrum 37, 46 (2000).CrossRefGoogle Scholar
  21. 22.
    D. A. B. Miller, Proceedings of the IEEE 88, 728 (2000).CrossRefGoogle Scholar
  22. 23.
    Electrodynamics of Continuous Media by L. D. Landau and E. M. Lifshitz (Pergamon Press, Oxford, 1960), p. 256.MATHGoogle Scholar
  23. 24.
    Fields and Waves in Communication Electronics by S. Ramo, J. R. Whinnery, and T. van Duzer (John Wiley & Sons, New York, 1965), p. 623.Google Scholar
  24. 25.
    E. L. Bolda, R. Y. Chiao, and J. C. Garrison, Phys. Rev. A 48, 3890 (1993).ADSCrossRefGoogle Scholar
  25. 26.
    R. Loudon, J. Phys, A 3, 233 (1970).ADSCrossRefGoogle Scholar
  26. 27.
    E. O. Schulz-Dubois, Proc. IEEE 57, 1748 (1969).CrossRefGoogle Scholar
  27. 28.
    K. E. Oughstun and S. Shen, J. Opt. Soc. Am. B 5, 2395 (1988).ADSCrossRefGoogle Scholar
  28. 29.
    J. Peatross, S. A. Glasgow, and M. Ware, Phys. Rev. Lett. 84, 2370 (2000).ADSCrossRefGoogle Scholar
  29. 30.
    M. A. H. Tucker and A. F. G Wyatt, Science 283, 1150 (1999).ADSCrossRefGoogle Scholar
  30. 31.
    P. A. Mulheran and J. C. Inkson, Phys. Rev. B 46, 5454 (1992).ADSCrossRefGoogle Scholar
  31. 32.
    F. Dalfovo, A. Fracchetti, A. Lastri, L. Pitaevskii, S. Stringari, Phys. Rev. Lett. 75, 2510 (1995).ADSCrossRefGoogle Scholar
  32. 33.
    C. E. Campbell, E. Krotscheck, and M. Saarela, Phys. Rev. Lett. 80, 2169 (1998).ADSCrossRefGoogle Scholar
  33. 34.
    J. W. Halley, C. E. Campbell, C. F. Giese, and K. Goetz, Phys. Rev. Lett. 71, 2429 (1993); A. K. Setty, J. W. Halley, and C. E. Campbell, Phys. Rev. Lett. 79, 3930 (1997).ADSCrossRefGoogle Scholar
  34. 35.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); C. C. Bradley, C. A. Sackett. J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1993); K. B. Davis, M.-O. Mewses, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); D. Kleppner, Physics Today 49, 11 (1996); A. S. Parkins and D. F. Walls, Physics Reports 303, 1 (1998).ADSCrossRefGoogle Scholar
  35. 36.
    N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947); R. Y. Chiao, Opt. Comm. 179, 157 (2000).Google Scholar
  36. 37.
    W. Ketterle and S. Inouye, arXiv:cond-mat/0101424 29 Jan 2001.Google Scholar
  37. 38.
    Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988); Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990).ADSCrossRefGoogle Scholar
  38. 39.
    A. M. Steinberg, Phys. Rev. A 52, 32 (1995); A. M. Steinberg, Phys. Rev. Lett. 74, 2405 (1995).MathSciNetADSCrossRefGoogle Scholar
  39. 40.
    C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, Nature 409, 490 (2001).ADSCrossRefGoogle Scholar
  40. 41.
    The Electrical Engineering Handbook edited by R. C. Dorf (2nd edition, CRC Press/IEEE Press, Boca Raton, 1997), p. 812.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Raymond Y. Chiao
    • 1
  • Claus Ropers
    • 1
  • Daniel Solli
    • 1
  • Jandir M. Hickmann
    • 1
  1. 1.Department of PhysicsUniversity of California BerkeleyCalifornia

Personalised recommendations