Skip to main content

Decoherence of trapped-atom motional state superpositions

  • Conference paper
Coherence and Quantum Optics VIII

Abstract

Experiments that investigate the decoherence of superpositions of motional states of trapped ions are described. Decoherence is characterized by the loss of contrast in Ramsey-type interferometer experiments involving superpositions of two motional coherent states or two motional Fock states that are subject to stochastically fluctuating electric fields.

Contribution of NIST; not subject to U. S. copyright

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” quant-ph/0105127 (2001).

    Google Scholar 

  2. D. P. DiVincenzo, in Scalable Quantum Computers, S. L. Braunstein and H. K. Lo, eds., (Wiley-VCH, Berlin, 2001), pp. 1–13.

    Google Scholar 

  3. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Physics Today 44, 36–44 (October, 1991).

    Article  Google Scholar 

  4. A. O. Caldeira and A. J. Leggett, “Influence of damping on quantum interference: an exactly soluble model,” Phys. Rev. A 31, 1059–1066 (1985).

    Article  ADS  Google Scholar 

  5. D. F. Walls and G. J. Milburn, “Effect of dissipation on quantum coherence,” Phys. Rev. A 31, 2403–2408 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. J. Collett, “Exact density-matrix calculations for simple open systems,” Phys. Rev. A 38, 2233–2247 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. F. Walls and G. J. Milburn, Quantum Optics, 1st ed. (Springer, Berlin, 1994).

    MATH  Google Scholar 

  8. W. Vogel and D. G. Welsch, Quantum Optics, 1st ed. (Akademie Verlag, Berlin, 1994).

    Google Scholar 

  9. V. Buřek and P. L. Knight, “Quantum interference, superposition states of light, and nonclassical effects,” Prog. Opt. 34, 1–158 (1995).

    Article  Google Scholar 

  10. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum reservoir engineering with laser cooled trapped ions,” Phys. Rev. Lett. 77, 4728–4731 (1996).

    Article  ADS  Google Scholar 

  11. W. P. Schleich, Quantum Optics in Phase Space, 1st ed. (Wiley-VCH, Berlin, 2001).

    Book  MATH  Google Scholar 

  12. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Nat. Inst. Stand. Tech. 103, 259–328 (1998).

    Article  Google Scholar 

  13. C. K. Law and J. H. Eberly, “Arbitrary Control of a Quantum Electromagnetic Field,” Phys. Rev. Lett. 76, 1055–1058 (1996).

    Article  ADS  Google Scholar 

  14. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).

    Article  ADS  Google Scholar 

  15. S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A 57, 3748–3752 (1998).

    Article  ADS  Google Scholar 

  16. M. Murao and P. L. Knight, “Decoherence in nonclassical motional states of a trapped ion,” Phys. Rev. A 58, 663–669 (1998).

    Article  ADS  Google Scholar 

  17. S. Schneider and G. J. Milburn, “Decoherence and fidelity in ion traps with fluctuating trap parameters,” Phys. Rev. A 59, 3766–3774 (1999).

    Article  ADS  Google Scholar 

  18. R. Bonifacio, S. Olivares, P. Tombesi, and D. Vitali, “Model-independent approach to nondissipative decoherence,” Phys. Rev. A 61, 053802-1-8 (2000).

    Google Scholar 

  19. D. J. Wineland and H. G. Dehmelt, “Principles of the stored ion calorimeter,” J. Appl, Phys. 46, 919–930 (1975).

    Article  ADS  Google Scholar 

  20. C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, “Decoherence of quantum superpositions through coupling to engineered reservoirs,” Nature 403, 269–273 (2000).

    Article  ADS  Google Scholar 

  21. Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, “Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs,” Phys. Rev. A 62, 053807-1-22 (2000).

    Google Scholar 

  22. N. F. Ramsey, Molecular Beams (Oxford University Press, London, 1963).

    Google Scholar 

  23. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A “Schrödinger cat” superposition state of an atom,” Science 272, 1131–1136 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Q. A. Turchette et al., “Heating of trapped ions from the quantum ground state,” Phys. Rev. A 61, 063418-1-8 (2000).

    Google Scholar 

  25. J. M. Raimond, M. Brune, and S. Haroche, “Reversible decoherence of a mesoscopic superposition of field states,” Phys. Rev. Lett. 79, 1964–1967 (1997).

    Article  ADS  Google Scholar 

  26. M. S. Chapman, T. D. Hammond, A. Lenef, J. Schmiedmayer, R. A. Rubenstein, E. Smith, and D. E. Pritchard, “Photon scattering from atoms in an interferometer: coherence lost and regained,” Phys. Rev. Lett. 75, 3783–3787 (1995).

    Article  ADS  Google Scholar 

  27. S. Dürr, T. Nonn, and G. Rempe, “Fringe visibility and which-way information in an atom interferometer,” Phys. Rev. Lett. 81, 5705–5709 (1998).

    Article  ADS  Google Scholar 

  28. D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, “From single-to multiple-photon decoherence in an atom interferometer,” Phys. Rev. Lett. 86, 2191–2195 (2001).

    Article  ADS  Google Scholar 

  29. P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J. Raimond, and S. Haroche, “A complementarity experiment with an interferometer at the quantum-classical boundary,” Science 411, 166–170 (2001).

    Google Scholar 

  30. X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett. 79, 769–772 (1997).

    Article  ADS  Google Scholar 

  31. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field,” Nature 403, 743–746 (2000).

    Article  ADS  Google Scholar 

  32. A. J. Leggett, “Quantum theory; weird and wonderful,” Physics World 12, 73–77 (December, 1999).

    Google Scholar 

  33. B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register,” Phys. Rev. Lett. 81, 1525–1528 (1998).

    Article  ADS  Google Scholar 

  34. H. Rohde, S. T. Gulde, C. F. Roos, P. A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Sympathetic ground-state cooling and coherent manipulation with two-ion crystals,” J. Opt. B: Quantum Semiclass. Opt. 3, S34–S41 (2001).

    Article  ADS  Google Scholar 

  35. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser Cooling to the Zero Point Energy of Motion,” Phys. Rev. Lett. 62, 403–406 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Wineland, D.J. et al. (2003). Decoherence of trapped-atom motional state superpositions. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics