Advertisement

Decoherence of trapped-atom motional state superpositions

  • D. J. Wineland
  • C. Monroe
  • C. J. Myatt
  • Q. A. Turchette
  • C. A. Sackett
  • D. Kielpinski
  • B. E. King
  • W. M. Itano
Conference paper

Abstract

Experiments that investigate the decoherence of superpositions of motional states of trapped ions are described. Decoherence is characterized by the loss of contrast in Ramsey-type interferometer experiments involving superpositions of two motional coherent states or two motional Fock states that are subject to stochastically fluctuating electric fields.

Keywords

Motional State Laser Cool Superposition State Fringe Contrast Trap Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. 1.
    W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” quant-ph/0105127 (2001).Google Scholar
  2. 2.
    D. P. DiVincenzo, in Scalable Quantum Computers, S. L. Braunstein and H. K. Lo, eds., (Wiley-VCH, Berlin, 2001), pp. 1–13.Google Scholar
  3. 3.
    W. H. Zurek, “Decoherence and the transition from quantum to classical,” Physics Today 44, 36–44 (October, 1991).CrossRefGoogle Scholar
  4. 4.
    A. O. Caldeira and A. J. Leggett, “Influence of damping on quantum interference: an exactly soluble model,” Phys. Rev. A 31, 1059–1066 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    D. F. Walls and G. J. Milburn, “Effect of dissipation on quantum coherence,” Phys. Rev. A 31, 2403–2408 (1985).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. J. Collett, “Exact density-matrix calculations for simple open systems,” Phys. Rev. A 38, 2233–2247 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D. F. Walls and G. J. Milburn, Quantum Optics, 1st ed. (Springer, Berlin, 1994).MATHGoogle Scholar
  8. 8.
    W. Vogel and D. G. Welsch, Quantum Optics, 1st ed. (Akademie Verlag, Berlin, 1994).Google Scholar
  9. 9.
    V. Buřek and P. L. Knight, “Quantum interference, superposition states of light, and nonclassical effects,” Prog. Opt. 34, 1–158 (1995).CrossRefGoogle Scholar
  10. 10.
    J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum reservoir engineering with laser cooled trapped ions,” Phys. Rev. Lett. 77, 4728–4731 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    W. P. Schleich, Quantum Optics in Phase Space, 1st ed. (Wiley-VCH, Berlin, 2001).MATHCrossRefGoogle Scholar
  12. 12.
    D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Nat. Inst. Stand. Tech. 103, 259–328 (1998).CrossRefGoogle Scholar
  13. 13.
    C. K. Law and J. H. Eberly, “Arbitrary Control of a Quantum Electromagnetic Field,” Phys. Rev. Lett. 76, 1055–1058 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A 57, 3748–3752 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    M. Murao and P. L. Knight, “Decoherence in nonclassical motional states of a trapped ion,” Phys. Rev. A 58, 663–669 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    S. Schneider and G. J. Milburn, “Decoherence and fidelity in ion traps with fluctuating trap parameters,” Phys. Rev. A 59, 3766–3774 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    R. Bonifacio, S. Olivares, P. Tombesi, and D. Vitali, “Model-independent approach to nondissipative decoherence,” Phys. Rev. A 61, 053802-1-8 (2000).Google Scholar
  19. 19.
    D. J. Wineland and H. G. Dehmelt, “Principles of the stored ion calorimeter,” J. Appl, Phys. 46, 919–930 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, “Decoherence of quantum superpositions through coupling to engineered reservoirs,” Nature 403, 269–273 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, “Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs,” Phys. Rev. A 62, 053807-1-22 (2000).Google Scholar
  22. 22.
    N. F. Ramsey, Molecular Beams (Oxford University Press, London, 1963).Google Scholar
  23. 23.
    C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A “Schrödinger cat” superposition state of an atom,” Science 272, 1131–1136 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Q. A. Turchette et al., “Heating of trapped ions from the quantum ground state,” Phys. Rev. A 61, 063418-1-8 (2000).Google Scholar
  25. 25.
    J. M. Raimond, M. Brune, and S. Haroche, “Reversible decoherence of a mesoscopic superposition of field states,” Phys. Rev. Lett. 79, 1964–1967 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    M. S. Chapman, T. D. Hammond, A. Lenef, J. Schmiedmayer, R. A. Rubenstein, E. Smith, and D. E. Pritchard, “Photon scattering from atoms in an interferometer: coherence lost and regained,” Phys. Rev. Lett. 75, 3783–3787 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    S. Dürr, T. Nonn, and G. Rempe, “Fringe visibility and which-way information in an atom interferometer,” Phys. Rev. Lett. 81, 5705–5709 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, “From single-to multiple-photon decoherence in an atom interferometer,” Phys. Rev. Lett. 86, 2191–2195 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J. Raimond, and S. Haroche, “A complementarity experiment with an interferometer at the quantum-classical boundary,” Science 411, 166–170 (2001).Google Scholar
  30. 30.
    X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett. 79, 769–772 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field,” Nature 403, 743–746 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    A. J. Leggett, “Quantum theory; weird and wonderful,” Physics World 12, 73–77 (December, 1999).Google Scholar
  33. 33.
    B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register,” Phys. Rev. Lett. 81, 1525–1528 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    H. Rohde, S. T. Gulde, C. F. Roos, P. A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Sympathetic ground-state cooling and coherent manipulation with two-ion crystals,” J. Opt. B: Quantum Semiclass. Opt. 3, S34–S41 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser Cooling to the Zero Point Energy of Motion,” Phys. Rev. Lett. 62, 403–406 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • D. J. Wineland
    • 1
  • C. Monroe
    • 2
  • C. J. Myatt
    • 3
  • Q. A. Turchette
    • 4
  • C. A. Sackett
    • 5
  • D. Kielpinski
    • 6
  • B. E. King
    • 7
  • W. M. Itano
    • 1
  1. 1.NISTBoulder
  2. 2.Dept. of PhysicsUniv. MichiganAnn Arbor
  3. 3.Precision PhotonicsBoulder
  4. 4.Research Electro-OpticsBoulder
  5. 5.Dept. of PhysicsUniv. VirginiaCharlottesville
  6. 6.Dept. of PhysicsMITCambridge
  7. 7.NISTGaithersburg

Personalised recommendations