Skip to main content

Single atoms and single photons in cavity quantum electrodynamics

  • Conference paper
Coherence and Quantum Optics VIII

Abstract

We review some recent work performed with single moving atoms strongly coupled to high-finesse optical cavities, emphasizing cavity-mediated light forces and vacuum-stimulated generation of single photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996).

    Article  ADS  Google Scholar 

  2. P. Münstermann, T. Fischer, P.W. H. Pinkse, and G. Rempe, “Single slow atoms from an atomic fountain observed in a high-finesse optical cavity,” Opt.Comm. 159, 63–67 (1999).

    Article  ADS  Google Scholar 

  3. C. J. Hood, M. S. Chapman, T. W. Lynn, H. J. Kimble, “Real-Time Cavity QED with Single Atoms,” Phys. Rev. Lett. 80, 4157–4160 (1998).

    Article  ADS  Google Scholar 

  4. P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, “Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity,” Phys.Rev. Lett. 82, 3791–3794 (1999).

    Article  ADS  Google Scholar 

  5. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).

    Article  ADS  Google Scholar 

  6. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons,” Science 287, 1447–1453 (2000).

    Article  ADS  Google Scholar 

  7. P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe.“ An optical kaleidoscope using a single atom,” quant-ph/0105048.

    Google Scholar 

  8. P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H. Ritsch, “Cavity-Induced Atom Cooling in the Strong Coupling Regime,” Phys. Rev. Lett. 79, 4974–4977 (1997).

    Article  ADS  Google Scholar 

  9. V. Vuletić and S. Chu, “Laser Cooling of Atoms, Ions, or Molecules by Coherent Scattering,” Phys. Rev. Lett. 84, 3787–3790 (2000).

    Article  ADS  Google Scholar 

  10. C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).

    ADS  Google Scholar 

  11. A. Kuhn, M. Hennrich, T. Bondo, and G. Rempe, “Controlled generation of single photons from a strongly coupled atom-cavity system,” Appl. Phys. B 69, 373–377 (1999).

    Article  ADS  Google Scholar 

  12. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe. “Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity,” Phys. Rev. Lett. 85, 4872–4875 (2000).

    Article  ADS  Google Scholar 

  13. S. Haroche, M. Brune, and J. M. Raimond, “Trapping atoms by the vacuum field in a cavity,” Europhys. Lett. 14, 19–24 (1991).

    Article  ADS  Google Scholar 

  14. B.-G. Englert, J. Schwinger, A.O. Barut and M. O. Scully, “Reflecting slow atoms from a micromaser field,” Europhys. Lett. 14, 25–31 (1991).

    Article  ADS  Google Scholar 

  15. P. Münstermann, T. Fischer, P. Maunz, P.W. H. Pinkse, and G. Rempe, “Observation of’ Cavity-Mediated Long-Range Light Forces between Strongly Coupled Atoms,” Phys. Rev. Lett. 84, 4068–4071 (2000).

    Article  ADS  Google Scholar 

  16. G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch, “Cooling an atom in a weakly driven high-Q cavity,” Phys. Rev. A 58, 3030–3042 (1998).

    Article  ADS  Google Scholar 

  17. T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Collective light forces on atoms in a high-finesse cavity,” NewJournal of Physics 3, 11.1–11.20 (2001).

    Google Scholar 

  18. P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).

    ADS  Google Scholar 

  19. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  20. J. Kim, O. Benson, A. Kann, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).

    Article  ADS  Google Scholar 

  21. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence,” Phys. Rev. Lett 83, 2722–2725 (1999).

    Article  ADS  Google Scholar 

  22. B. Lounis and W. E. Moemer, “Single photon son demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).

    Article  ADS  Google Scholar 

  23. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. 85, 290–293 (2000).

    Article  ADS  Google Scholar 

  24. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1297 (2000).

    Article  ADS  Google Scholar 

  25. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered SinglePhotons from a Quantum Dot,” Phys.Rev. Lett. 86, 1502–1505 (2001).

    Article  ADS  Google Scholar 

  26. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and EntangledPhotons froma Single Quantum Dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  27. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  28. For a review, see, e.g., K. Bergmann and B. W. Shore, in MolecularDynamics and Stimulated Emission Pumping, H. L. Dai and R. W. Field, eds., (World Scientific, Singapore, 1995), 315–373.

    Chapter  Google Scholar 

  29. J. I. Cirac and P. Zoller and H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Rempe, G. et al. (2003). Single atoms and single photons in cavity quantum electrodynamics. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics