Skip to main content

Wave-particle correlations of non-classical light

  • Conference paper
Coherence and Quantum Optics VIII

Abstract

We present our investigations of a third order correlation function of the electromagnetic field. The correlation function is subject to Schwartz inequalities and under conditions where third-order moments of the noise are negligible is the Fourier transform of the spectrum of squeezing. We present measurements and calculations of this correlation function in a strongly coupled system of cavity QED that produces non-classical light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light.” Nature 177, 27 (1956).

    Article  Google Scholar 

  2. Squeezed States of the Electromagnetic Field, edited by H. J. Kimble and D. F. Walls, special issue of J. Opt. Soc. Am. B 4, 1450 (1987).

    Google Scholar 

  3. Squeezed Light, edited by R. Loudon and P. L. Knight, special issue of J. Mod. Opt. 34, 709 (1987).

    Google Scholar 

  4. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics.” Phys. Rev. Lett. 67, 1727 (1991).

    Article  ADS  Google Scholar 

  5. S. L. Mielke, G. T. Foster, and L. A. Orozco “Non-classical Intensity Correlations in Cavity QED.” Phys. Rev. Lett. 80, 3948 (1998).

    Article  ADS  Google Scholar 

  6. G. T. Foster, S. L. Mielke, and L. A. Orozco “Intensity correlations in cavity QED.” Phys. Rev. A 61, 53821 (2000).

    Article  ADS  Google Scholar 

  7. M. G. Raizen, L. A. Orozco, M. Xiao, M., T. L. Boyd, and H. J. Kimble, “Squeezed-state generat ion by the normal modes of a coupled system.” Phys. Rev. Lett. 59, 198 (1987).

    Article  ADS  Google Scholar 

  8. L. A. Orozco, M. G. Raizen, Min Xiao, R. J. Brecha, and H. J. Kimble, “Squeezed State Generation in Optical Bistability.” J. Opt. Soc. Am. B 4, 1490 (1987).

    Article  ADS  Google Scholar 

  9. D. M. Hope, H. A. Bachor, D. E. McClelland, and A. Stevenson, “The Atom-Cavity System as a Generator of Quadrature Squeezed States.” Appl. Phys. B 55, 210 (1992).

    Article  ADS  Google Scholar 

  10. H. J. Carmichael, H. Castro Beltran, G. T. Foster, and L. A. Orozco, “Giant Violations of Classical Inequalities Through Conditional Homodyne Detection of the Quadrature Amplitudes of Light.” Phys. Rev. Lett. 85, 1855 (2000).

    Article  ADS  Google Scholar 

  11. G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, “Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations.” Phys. Rev. Lett. 85, 3149 (2000).

    Article  ADS  Google Scholar 

  12. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, New York, 1995).

    Google Scholar 

  13. B. Yurke and D. Stoler, “Measurement of Amplitude Probability-Distributions for Photon Number Operator Eigenstates.” Phys. Rev. A 36, 1955 (1987).

    Article  ADS  Google Scholar 

  14. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State.” Phys, Rev. Lett. 87, 050402 (2001).

    Article  ADS  Google Scholar 

  15. H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wave-function in cavity QED.” Opt. Comm. 82, 73 (1991).

    Article  ADS  Google Scholar 

  16. P. Berman, ed., Cavity Quantum Electrodynamics, Supplement 2 of Advances in Atomic, Molecular and Optical Physics series (Academic Press, Boston, 1994).

    Google Scholar 

  17. L. A. Lugiato, “Theory of Optical Bistability”, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1984), Vol. XXI, p. 69–216.

    Google Scholar 

  18. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche “Seeing a single photon without destroying it.” Nature 400, 239 (1999).

    Article  ADS  Google Scholar 

  19. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche “Step-by-step engineered multiparticle entanglement.” Science 288, 2024 (2000).

    Article  ADS  Google Scholar 

  20. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field.” Nature 403, 743 (2000).

    Article  ADS  Google Scholar 

  21. M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, “Trapping states in the micromaser.” Phys. Rev. Lett. 82, 3795 (1999).

    Article  ADS  Google Scholar 

  22. C. J. Hood, R. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons.” Science 287, 1447 (2000).

    Article  ADS  Google Scholar 

  23. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons.” Nature 404, 365 (2000).

    Article  ADS  Google Scholar 

  24. A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble, “Trapping of Single Atoms with Single Photons in Cavity QED.” Phys. Rev. A 63, 013401 (2001).

    Article  ADS  Google Scholar 

  25. E. T. Jaynes, F. W. Cummings, “Comparison of Quantum and Semiclassical radiation Theories with Application to the Beam Maser.” Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  26. J. E. Reiner, W. P. Smith, L. A. Orozco, H. J. Carmichael, P. R. Rice, “Time evolution and squeezing of the field amplitude in cavity QED.” To appear in J. Opt. Soc. Am. B (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Foster, G.T., Orozco, L.A., Reiner, J.E., Smith, W.P., Carmichael, H.J., Rice, P.R. (2003). Wave-particle correlations of non-classical light. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics