Quantum interferometry with fiber solitons — a direct experimental test of non-separability

  • N. Korolkova
  • Ch. Silberhorn
  • O. Glöckl
  • F. König
  • G. Leuchs
Conference paper


We present a scheme for a direct experimental test of non-separability of a quantum state of two intense optical beams. On this basis, new entanglement-based quantum interferometry schemes using fiber solitons are suggested implying linear or nonlinear coupling of interacting pulses. The prospects of quantum interferometry with fiber solitons for quantum information processing are discusse.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. 1.
    F. De Martini, G. Denardo, and Y. Shih (Eds.), “Quant um Interferometry,” Proceedings of an Adriatic Workshop, Trieste, March 1996, (VCH: Weinheim New York Baesl Cambridge Tokyo 1996).Google Scholar
  2. 2.
    S. Lloyd and S. L. Braunstein, “Quantum Computation over Continuous Variables,” Phys. Rev. Lett. 82, 1784 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science, 283, 706 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fibre,” Phys. Rev. Lett. 86, 4267 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett., A 223, 1 (1996).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    R. Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84, 2726 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    D. F. Walls and G. J. Milburn, “Quantum optics,” (Springer Verlag: Berlin 1994).MATHGoogle Scholar
  8. 8.
    L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84, 2722 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    K. Mattie, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhang, C. Xie, and K. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Quantum semiclass. Opt., 3, 293 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemoliton measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    S. Spälter, N. Korolkova, F. König, A. Sizmann and G. Leuchs, “Observation of multimode quantum correlation in fiber optical solitons,” Phys. Rev. Lett. 81, 786 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    F. König, M. A. Zielonka, and A. Sizmann, “Transient quantum correlations of interacting solitons,” Phys. Rev. Lett., submitted.Google Scholar
  16. 16.
    F. König, B. Buchler, T. Rechtenwald, A. Sizmann, and G. Leuchs,“QND detection of the soliton photon number by spectral filtering,” Conference on Laser and Electro-Optics / Europe — European Quantum Electornics Conference CLEO/Europe-EQEC Focus Meeting 2001, Munich, Germany, June 18–22, 2001, CLEO/Europe-EQEC Focus Meeting Conference Digest, 296.Google Scholar
  17. 17.
    L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of Gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” quant-ph/0101098 (2001).Google Scholar
  19. 19.
    M. Ozawa, “Quantum nondemolition monitoring of universal quantum computers,” Phys. Rev. Lett. 80, 631 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    D. B. Horoshko and S. Ya. Kilin, “Quantum teleportation using quantum nondemolition technique,” Phys. Rev. A 61, 032304 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • N. Korolkova
    • 1
  • Ch. Silberhorn
    • 1
  • O. Glöckl
    • 1
  • F. König
    • 1
  • G. Leuchs
    • 1
  1. 1.Zentrum für Moderne Optik an der Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations