Effects of Vitamin D on Bone and Natural Selection of Skin Color: How Much Vitamin D Nutrition are We Talking About?

  • Reinhold Vieth

Abstract

Until the 1990s, the criterion for appropriate vitamin D nutrition was simply the absence of overt rickets or osteomalacia (Blumberg et al., 1963). Now, circulating 25-hydroxyvitamin D [25(OH)D] concentrations are the appropriate measure of vitamin D nutritional status (Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 1997). It is now possible to make more quantitative comparisons of vitamin D nutrition through primate and human evolution, and to draw inferences about how differences in vitamin D nutrition may have affected susceptibility to disease.

Keywords

Cholesterol Osteoporosis Pneumonia Tuberculosis Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.E., Gacad, M.A., Baker, A.J., and Rude, R.K. (1985). Serum concentrations of 1,25-dihydroxyvitamin D3 in Platyrrhini and Cathrrhini: A phylogenetic appraisal. Am. J. Primalol. 9, 219–224.CrossRefGoogle Scholar
  2. Al Arabi, K.M., Elidrissy, A.W., and Sedrani, S.H. (1984). Is avoidance of sunlight a cause of fractures of the femoral neck in elderly Saudis? Trop. Geogr. Med. 36, 273–279.Google Scholar
  3. Alagol, F., Shihadeh. Y., Boztepe, H., Tanakol, R., Yarman, S., Azizlerli, H., and Sandalci, O. (2000). Sunlight exposure and vitamin D deficiency in Turkish women. J. Endocrinol. Invest. 23, 173–177.Google Scholar
  4. Better, O.S., Shabtai, M., Kedar, S., Melamud, A., Berenheim, J., and Chaimovitz, C. (1980). Increased incidence of nephrolithiasis in lifeguards in Isreal. In S.G. Massry, E. Ritz, and G. Jahreis (eds), Phosphate and Minerals in Health and Disease. Plenum Press, New York, pp. 467–472.CrossRefGoogle Scholar
  5. Bicknell, F. and Prescott, F. (1946). Vitamin D. The antirachitic or calcifying vitamin. In F. Bicknell and F. Prescott (eds), Vitamins in Medicine. Whitefriars Press, London, pp. 630–707.Google Scholar
  6. Bikle, D.D. and Pillai, S. (1993). Vitamin D, calcium, and epidermal differentiation. Endocr. Rev. 14, 3–19.Google Scholar
  7. Blumberg, R.W, Forbes, G.B., Fraser, D., Hansen, A.E., Lowe, C.U., Smith, N.J., Sweeney, M.J., and Fomon, S.J. (1963). The prophylactic requirement and the toxicity of vitamin D. Pediatrics 31, 512–525.Google Scholar
  8. Carpenter, K.J. and Zhao, L. (1999). Forgotten mysteries in the early history of vitamin D. J. Nutr. 129, 923–927.Google Scholar
  9. Chan, T.Y. (2000). Vitamin D deficiency and susceptibility to tuberculosis. Calcif. Tissue Int. 66, 476–478.CrossRefGoogle Scholar
  10. Chapuy, M.C., Arlot, M.E., Duboeuf, F., Brun, J., Crouzet, B., Arnaud, S., Delmas, P.D., and Meunier, P.J. (1992). Vitamin D3 and calcium to prevent hip fractures in the elderly women. N. Engl. J. Med. 327, 1637–1642.CrossRefGoogle Scholar
  11. Chel, V.G., Ooms, M.E., Popp-Snijders, C, Pavel, S., Schothorst, A.A., Meulemans, C.C., and Lips, P. (1998). Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary hyperparathyroidism in the elderly. J. Bone Miner. Res. 13, 1238–1242.CrossRefGoogle Scholar
  12. Chesney, R.W., Hamstra, A.J., and DeLuca, H.F. (1981). Rickets of prematurity: Supranormal levels of serum 1,25-dihydroxyvitamin D. Am. J. Dis. Child. 135, 34–37.Google Scholar
  13. Davie, M.W., Lyawson, D.E., Emberson, C, Barnes, J.L., Roberts, G.E., and Barnes, N.D. (1982). Vitamin D from skin: Contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsanttreated subjects. Clin. Sci. 63, 461–472.Google Scholar
  14. Dawson-Hughes, B., Dallai, G.E., Krall, E.A., Harris, S., Sokoll, L.J., and Falconer, G. (1991). Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann. Int. Med. 115, 505–512.Google Scholar
  15. Dawson-Hughes, B., Harris, S.S., Krall, E.A., and Dallai, G.E. (1997). Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676.CrossRefGoogle Scholar
  16. Dent, C.E., Round, J.M., Rowe, D.J., and Stamp, T.C. (1973). Effect of chapattis and ultraviolet irradiation on nutritional rickets in an Indian immigrant. Lancet 1, 1282–1284.CrossRefGoogle Scholar
  17. Douglas, A.S., Ali, S., and Bakhshi, S.S. (1998). Does vitamin D deficiency account for ethnic differences in tuberculosis seasonality in the UK? Ethn. Health 3, 247–253.CrossRefGoogle Scholar
  18. Dusso, A., Finch, J., Delmez, J., Rapp, N., Lopez-Hilker, S., Brown, A., and Slatopolsky, E. (1990). Extrarenal production of calcitriol. Kidney Int. Suppl. 29, S36–S40.Google Scholar
  19. Eaton, S.B. and Nelson, D.A. (1991). Calcium in evolutionary perspective. Am. J. Clin. Nutr. 54, 281S–287S.Google Scholar
  20. Emhry, A.F., Snowdon, L.R., and Vieth, R. (2000). Vitamin D and seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann. Neurol. 48, 271–272.Google Scholar
  21. Eva, J.K. (1999). Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. The EURODIAB Substudy 2 Study Group. Diabetologia 42, 51–54.CrossRefGoogle Scholar
  22. Falkenbach, A., Unkelbach, U., Boehm, B.O., Regeniter, A., Stein, J., Seiffert, U., and Wendt, T. (1993). Bone metabolism before and after irradiation with ultraviolet light. Eur. J. Appl. Physiol. 66, 55–59.CrossRefGoogle Scholar
  23. Fiennes, R.N. (1974). Problems of rickets in monkeys and apes. Proc. R. Soc. Med. 67, 309–314.Google Scholar
  24. Fonseca, V, Tongia, R., el Hazmi, M., and Abu-Aisha, H. (1984). Exposure to sunlight and vitamin D deficiency in Saudi Arabian women. Postgrad. Med. J. 60, 589–591.CrossRefGoogle Scholar
  25. Fraser, D.R. (1983). The physiological economy of vitamin D. Lancet I, 969–972.CrossRefGoogle Scholar
  26. Fuleihan, G.E. and Deeb, M. (1999). Hypovitaminosis D in a sunny country. N. Engl. J. Med. 340, 1840-1841. Fuller, K. (2000). Lactose, rickets, and the coevolution of genes and culture. Hum. Ecol. 28, 471–477.Google Scholar
  27. Gacad, M.A. and Adams, J.S. (1992). Specificity of steroid binding in New World primate B95-8 cells with a vitamin D-resistant phenotype. Endocrinology 131, 2581–2587.CrossRefGoogle Scholar
  28. Garabedian, M., Bainsel, M., Mallet, E., Guillozo, H., Toppet, M., Grimherg, R., NGuen, T.M., and Balsan, S. (1983). Circulating vitamin D metabolite concentrations in children with nutritional rickets. J. Pediatr. 103, 381–386.CrossRefGoogle Scholar
  29. Garland, C.F., Garland, F.C., and Gorham, E.D. (1999). Calcium and vitamin D. Their potential roles in colon and breast cancer prevention. Ann. NY Acad. Sci. 889, 107–119.CrossRefGoogle Scholar
  30. Gessner, B.D., deSchweinitz, E., Peterscn. K.M., and Lewandowski, C. (1997). Nutritional rickets among breastfed black and Alaska Native children. Alaska Med. 39, 72–74, 87.Google Scholar
  31. Haddad, J.G. and Kyung, J.C. (1971). Competitive protein-binding radioassay for 25-hydroxycholecalciferol. J. Clin. Endocrinol. 33. 992–995.CrossRefGoogle Scholar
  32. Haddad, J.G., Matsuoka, L.Y., Hollis, B.W., Hu, Y.Z., and Wortsman, J. (1993). Human plasma transport of vitamin D after its endogenous synthesis. J. Clin. Invest. 91, 2552–2555.CrossRefGoogle Scholar
  33. Haddock, L., Corcino, J., and Vazquez, M.D. (1982). 25(OH)D serum levels in the normal Puerto Rican population and in subjects with tropical sprue and parathyroid disease. P. R. Health Sci. J. 1, 85–91.Google Scholar
  34. Harris, L.J. (1935), Vitamin D and rickets. In Anonymous. Vitamins in Theory and Practice. Cambridge University Press, Cambridge, pp. 107–150.Google Scholar
  35. Harris, L.J. (1956). Vitamin D and Bone. In G.H. Bourne (ed.), The Biochemistry and Physiology of Bone. Academic Press, New York, pp. 581–622.Google Scholar
  36. Hayes, C.E., Cantorna, M.T., and DeLuca, H.F. (1997). Vitamin D and multiple sclerosis. Proc. Soc. Exp. Biol. Med. 216, 21–27.Google Scholar
  37. Heaney, R.P. (1999). Lessons for nutritional science from vitamin D. Am. J. Clin. Nutr. 69, 825–826.Google Scholar
  38. Heikinheimo, R.J., Inkovaara, J.A., Harju, E.J., Haavisto, M.V., Kaarela, R.H., Kataja, J.M., Kokko, A.M., Kolho, L.A. et al. (1992). Annual injection of vitamin D and fractures of aged bones. Calcif. Tissue Int. 51, 105–110.CrossRefGoogle Scholar
  39. Henry, H. and Norman, A.W. (1975). Presence of renal 25-hydroxyvitamin-D-l-hydroxylase in species of all vertebrate classes. Comp. Biochem. Physiol. 50B, 431–434.Google Scholar
  40. Hewison, M., Zehnder, D., Bland, R., and Stewart, P.M. (2000), 1 Alpha-hydroxylase and the action of vitamin D. J. Moi. Endocrinol. 25, 141–148.CrossRefGoogle Scholar
  41. Holick, M.F. (1992). Evolutionary biology and pathology of vitamin D. J. Nutr. Sci. Vitaminol. Spec No: 79-83.Google Scholar
  42. Holick, M.F. (1995). Environmental factors that influence the cutaneous production of vitamin D. Am. J. Clin. Nutr. 61, 638S–645S.Google Scholar
  43. Holick, M.F., MacLaughlin, J.A., and Doppelt, S.H. (1981). Regulation of cutaneous previtamin D, photosynthesis in man: Skin pigment is not an essential regulator. Science 211, 590–593.CrossRefGoogle Scholar
  44. Hsu, J.Y., Feldman, D., McNeal, J.E., and Peehl, D.M. (2001). Reduced 1 alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res. 61, 2852–2856.Google Scholar
  45. Jablonski, N.G. and Chaplin, G. (2000). The evolution of human skin coloration. J. Hum. Evol. 39, 57–106.CrossRefGoogle Scholar
  46. Kewenig, S., Schneider, T., Hohloch, K., Lampe-Dreyer, K., Ullrich, R., Stolte, N., Stahl-Hennig, C, Kaup, F.J. et al. (1999). Rapid mucosal CD4( + ) T-cell depletion and enteropathy in simian immunodeficiency virusinfected rhesus macaques. Gastroenterology 116, 1115–1123.CrossRefGoogle Scholar
  47. Koch, H.C. and Burmeister, W. (1993). [Vitamin D status of children and adolescents of African and Asian diplomats in Germany]. [German]. Klin. Padiatr. 205, 416–420.CrossRefGoogle Scholar
  48. Krause, R., Buhring, M., Hopfenmuller, W., Holick, M.F., and Sharma, A.M. (1998) Ultraviolet B and blood pressure. Lancet 352, 709–710.CrossRefGoogle Scholar
  49. Lane, N.E., Gore, L.R., Cummings, S.R., Hochberg, M.C., Scott, J.C, Williams, E.N., and Nevitt, M.C. (1999). Serum vitamin D levels and incident changes of radiographie hip osteoarthritis: A longitudinal study. Study of Osteoporotic Fractures Research Group. Arthritis Rheum. 42, 854–860.CrossRefGoogle Scholar
  50. Lawson, M., Thomas, M., and Hardiman, A. (1999). Dietary and lifestyle factors affecting plasma vitamin D levels in Asian children living in England. Eur. J. Clin. Nutr. 53, 268–272.CrossRefGoogle Scholar
  51. Mahon, B.D., Bemiss, C, and Cantorna, M.T. (2001). Altered cytokine profile in patients with multiple sclerosis following vitamin D supplementation. FASEB J. 837, 4.Google Scholar
  52. Marx, S.J., Jones, G., Weinstein, R.S., Chrousos, G.P., and Renquist, D.M. (1989). Differences in mineral metabolism among nonhuman primates receiving diets with only vitamin D3 or only vitamin D2. J. Clin. Endocrinol. Metab. 69, 1282–1289.CrossRefGoogle Scholar
  53. Matsuoka, L.Y., Wortsman, J., and Hollis, B.W. (1990). Suntanning and cutaneous synthesis of vitamin D3 J. Lab. Clin. Med. 116, 87–90.Google Scholar
  54. Mawer, E.B., Berry, J.L., Sommer-Tsilenis, E., Beykirch, W., Kuhlwein. A., and Rohde, B.T. (1984). Ultraviolet irradiation increases serum 1,25-dihydroxy vitamin D in vitamin-D-replete adults. Miner. Electrolyte Metab. 10, 117–121.Google Scholar
  55. McAlindon, T.E., Felson, D.T., Zhang, Y., Hannan, M.T., Aliabadi, P., Weissman. B., Rush, D., Wilson, P.W., and Jacques, P. (1996). Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann. Intern. Med. 125, 353–359.Google Scholar
  56. McGrath, J. (2001). Does “imprinting” with low prenatal vitamin D contribute to the risk of various adult disorders? Med. Hypotheses 56, 367–371.CrossRefGoogle Scholar
  57. Meulmeester, J.F., van den Berg, H., Wedel, M., Boshuis, P.G., and Hulshof, K.F.L.R. (1990). Vitamin D status, parathyroid hormone and sunlight in Turkish, Moroccan and Caucasian children in The Netherlands. Eur. J. Clin.Nutr. 44, 461–470.Google Scholar
  58. Muhe, L., Lulseged, S., Mason, K.E., and Simoes, E.A. (1997). Case-control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet 349, 1801–1804.CrossRefGoogle Scholar
  59. Nestle, M. (2000). Paleolithic diets: A sceptical view. BNF Nutrition Bulletin 25, 43–47.CrossRefGoogle Scholar
  60. Nykjaer, A., Dragun, D., Walther, D., Vorum, H., Jacobsen, C, Herz, J., Meisen, F., Christensen, E.I. et al. (1999). An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3 Cell 96, 507–515.CrossRefGoogle Scholar
  61. Ott, S.M., Lipkin, E.W., and Newell-Morris, L. (1999). Bone physiology during pregnancy and lactation in young macaques. J. Bone Miner. Res. 14, 1779–1788.CrossRefGoogle Scholar
  62. Parfitt, A.M. (1990). Osteomalacia and related disorders. In Louis V. Arioli and Stephen M. Krane (ed.), Metabolic Bone Disease and Clinically Related Disorders, 2nd edn. W.B. Saunders, Philadelphia, pp. 329–396.Google Scholar
  63. Pfeifer, M., Begerow, B., Minne, H.W., Abrams, C, Nachtigall, D., and Hansen, C. (2000). Effects of a shortterm vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J. Bone Miner. Res. 15, 1113–1118.CrossRefGoogle Scholar
  64. Relethford, J.H. (1997). Hemispheric difference in human skin color. Am. J. Phys, Anthropol. 104, 449–457.CrossRefGoogle Scholar
  65. Rostand, S.G. (1997). Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 30, 150–156.CrossRefGoogle Scholar
  66. Schwartz, G.G., Wang, M.H., Zang, M., Singh, R.K., and Siegal, G.P. (1997). 1 Alpha,25-dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells. Cancer Epidemiol. Biomarkers Prevent. 6, 727–732.Google Scholar
  67. Schwartz, G.G., Whitlatch, L.W., Chen, T.C., Lokeshwar, B.L., and Holick, M.F. (1998). Human prostate cells synthesize 1,25-dihydroxy vitamin D3, from 25-hydroxy vitamin D3 Cancer Epidemiol. Biomarkers Prevent. 7, 391–395.Google Scholar
  68. Sedrani, S.H., Elidrissy, A.W., and El Arabi, K.M. (1983). Sunlight and vitamin D status in normal Saudi subjects. Am. J. Clin. Nutr. 38, 129–132.Google Scholar
  69. Stamp, T.C. (1975). Factors in human vitamin D nutrition and in the production and cure of classical rickets. Proc.Nutr. Soc. 34, 119–130.CrossRefGoogle Scholar
  70. Stamp, T.C., Haddad, J.G., and Twigg, C.A. (1977). Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating 25-hydroxyvitamin D. Lancet 1, 1341–1343.CrossRefGoogle Scholar
  71. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. (1997). Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press.Google Scholar
  72. Stene, L.C., Ulriksen, J., Magnus. P., and Joner, G. (2000). Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia 43, 1093–1098.CrossRefGoogle Scholar
  73. Sturm, R.A., Box, N.F., and Ramsay, M. (1998). Human pigmentation genetics: The difference is only skin deep. Bioessays 20, 712–721.CrossRefGoogle Scholar
  74. Trang, H., Cole, D.E., Rubin, L.A., Pierratos, A., Siu, S., and Vieth, R. (1998). Evidence that vitamin D, increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am. J. Clin. Nutr. 68, 854–848.Google Scholar
  75. Varghese, M., Rodman, J.S., Williams, J.J., Brown, A., Carter, D.M., Zerwekh, J.E., and Pak, C.Y. (1989). The effect of ultraviolet B radiation treatments on calcium excretion and vitamin D metabolites in kidney stone formers. Clin. Nephrol. 31, 225–231.Google Scholar
  76. Vieth, R. (1994). Simple method for determining specific binding capacity of vitamin D-binding protein and its use to calculate the concentration of “free” 1.25-dihydroxy vitamin D. Clin. Chem. 40, 435–441.Google Scholar
  77. Vieth, R. (1999). Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr. 69, 842–856.Google Scholar
  78. Vieth, R. (2001). Reply to J Hathcock and I Munro. Am. J. Clin. Nutr. 74, 866–867.Google Scholar
  79. Vieth, R., Kessler, M.J., and Pritzker, K.P. (1987). Serum concentrations of vitamin D metabolites in Cayo Santiago rhesus macaques. J. Med. Primatot. 16, 349–357.Google Scholar
  80. Vieth, R., McCarten, K., and Norwich, K.H. (1990). Role of 25-hydroxyvitamin D3, dose in determining rat 1,25-dihydroxyvitamin D, production. Am. J. Physiol. 258, E780–E789.Google Scholar
  81. Walters, M.R., Kollenkirchen, U., and Fox, J. (1992). What is vitamin D deficiency? Proc. Soc. Exp. Biol. Med. 199, 385–393.Google Scholar
  82. Webb, A.R., DeCosta, B.R., and Holick, M.F. (1989). Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J. Clin. Endocrinol. Metab. 68, 882–887.CrossRefGoogle Scholar
  83. Webb, A.R., Kline, L., and Holick, M.F. (1988). Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 67, 373–378.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Reinhold Vieth
    • 1
  1. 1.Department of Laboratory Medicine and PathobiologyUniversity of Toronto, and Mount Sinai HospitalTorontoCanada

Personalised recommendations