Skip to main content

Functional Adaptation and Fragility of the Skeleton

  • Chapter

Abstract

It is human nature that our perspectives on various subjects are colored by expectations derived from previous experiences, and this includes our attempts to understand the physiology and pathology of the skeleton. Medical students, having studied biochemistry far more than mechanics, often regard the skeleton as a static, mechanical framework on which are hung all the more interesting, biochemical parts of the body. In this view, the only physiologically interesting role of the skeleton is as a calcium reservoir, and beyond that its medical significance is summarized by the word “fractures.” Anthropology students, on the other hand, learn to value the skeleton as the part of the body that survives death, decay, and geological storage. A surviving bone may be examined at great length to try to elicit the behaviors, diet, illnesses, and other characteristics of its former owner. To obtain a more complete understanding of the role and function of the skeleton from any perspective, perhaps we should all try to see the skeleton from a bone’s own standpoint. This Chapter attempts to do that in the light of new developments in bone biology and mechanics that are of great consequence for both medicine and anthropology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarden, E.M., Burger, E.H., and Nijweide, P.J. (1994). Function of osteocytes in bone. Bone 55, 287–299.

    Google Scholar 

  • Bateson, G. (1987). Steps to an Ecology of Mind. Jason Aronson Inc., Northvale, NJ.

    Google Scholar 

  • Bentolila, V., Boyce, T.M., Fyhrie, D.P., Drumb, R., Skerry, T.M., and Schaffler, M.B. (1998). Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281.

    Article  Google Scholar 

  • Bogin, B. and Smith, B.H. (1996). Evolution of the human life cycle. Am. J. Hum. Biol. 8, 703–716.

    Article  Google Scholar 

  • Burr, D.B., Forwood, M.K,. Fyhrie, D.P., Martin, R.B., Schaffler, M.S., and Turner, C.H. (1997). Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15.

    Article  Google Scholar 

  • Burr, D.B., Martin, R.B., Schaffler, M.B., and Radin, E.L. (1985). Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200.

    Article  Google Scholar 

  • Burr, D.B., Yoshikawa, T., and Ruff, C.B. (1995). Moderate exercise increases intracortical activation frequency in old dogs. Trans. Orthop. Res. Soc. 20, 204.

    Google Scholar 

  • Cheng, M.Z., Zaman, G., Rawlinson, S.C., Suswillo, R.F., and Lanyon, L.E. (1996). Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J. Bone Miner. Res. 11, 502–511.

    Article  Google Scholar 

  • Dannucci, G.A., Martin, R.B., and Patterson-Buckendahl, P. (1987). Ovariectomy and trabecular bone remodeling in the dog. Calcif. Tissue Int. 40, 194–199.

    Article  Google Scholar 

  • Donahue, H.J. (1998). Gap junctional intercellular communication in bone: A cellular basis for the mechanostat set point. Calcif. Tissue Int. 62, 85–88.

    Article  Google Scholar 

  • Frost, H.M. (1960). Presence of microscopic cracks in vivo in bone. Henry Ford Hosp. Med. Bull. 8, 25–35.

    Google Scholar 

  • Frost, H.M. (1987). Bone “mass” and the “mechanostat”: A proposal. Anat. Rec. 219, 1–9.

    Article  Google Scholar 

  • Frost, H.M. (1992). The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J. Bone Miner. Res. 7, 253–261.

    Article  Google Scholar 

  • Garn, S.M. (1970). The Earlier Gain and the Later Loss of Cortical Bone. Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Haldane, J.B.S. (1956). On being the right size. In J.R. Newman (ed.), The World of Mathematics. Simon and Shuster New York, pp. 952–956.

    Google Scholar 

  • Hawkes, K., O’Connell, J.F., Jones, N.G.B., Alverez, H., and Charnov, E.L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proc. Natl. Acad. Sci. 95, 1336–1339.

    Article  Google Scholar 

  • Heinonen. A., Sievanen, H., Kyrolainen, H., Perttunen, J., and Kannus, P. (2001). Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb. Bone 29, 279–285.

    Article  Google Scholar 

  • Hertzberg, R,W. (1996). Deformation and fracture mechanics of engineering materials. John Wiley and Sons, New York.

    Google Scholar 

  • Houghton, P. (1980). The First New Zealanders. Hodder and Stoughton, Auckland.

    Google Scholar 

  • Knothe-Tate, M.L., Steck, R., Forwood, M.R., and Niederer, P. (2000). In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203, 2737–2745.

    Google Scholar 

  • Lacroix, P. (1971). The internal remodeling of bones. In G.H. Bourne (ed.), The Biochemistry and Physiology of Bone. Academic Press, New York.

    Google Scholar 

  • Lanyon, L.E. (1993). Osteocytes, strain detection, bone modeling and remodeling. Calcif. Tissue Int. 53(suppl.), S102–S106.

    Article  Google Scholar 

  • Li, X.J., Jee, W.S.S., Chow, S.Y., and Woodbury, D.M. (1990). Adaptation of cancellous bone to aging and immobilization: A single photon absorptiometry and histomorphometric study. Anat. Rec. 227, 12–24.

    Article  Google Scholar 

  • Martin, R.B. (1995). A mathematical model for fatigue damage repair and stress fracture in osteonal bone. J. Orthop.Res. 13, 309–316.

    Article  Google Scholar 

  • Martin, R.B. (2000). Toward a unifying theory of bone remodeling. Bone 26, 1–6.

    Article  Google Scholar 

  • Martin, R.B. (2002). Is all cortical bone remodeling initiated by microdamage? Bone 30, 8–13.

    Article  Google Scholar 

  • Martin, R.B. (2003). Fatigue damage, remodeling, and the minimization of skeletal weight. Journal of Theoretical Biology 220, 271–276.

    Article  Google Scholar 

  • Martin, R.B. (2001c). The role of bone remodeling in preventing or promoting stress fractures. In D.B. Burr and C. Milgrom (eds), Musculoskeletal fatigue and stress fractures. CRC Press, Boca Raton, FL, pp. 183–201.

    Google Scholar 

  • Martin, R.B., Burr, D.B., and Sharkey, N.S. (1998). Skeletal Tissue Mechanics. Springer-Verlag, New York.

    Google Scholar 

  • Mashiba, T., Hirano, T., Turner, C.H., Forwood, M.R., Johnston, C.C., and Burr, D.B. (2000). Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J. Bone Miner. Res. 15, 613–620.

    Article  Google Scholar 

  • Mori, S. and Burr, D.B. (1993). Increased intracortical remodeling following fatigue damage. Bone 14, 103–109.

    Article  Google Scholar 

  • Parfitt, A.M. (1993). Calcium homeostasis. In G.R. Mundy and Martin T.J. (eds), Physiology and Pharmacology of Bone. Springer-Verlag, Berlin, pp. 1–65.

    Chapter  Google Scholar 

  • Parfitt, A.M. (1994). Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55, 273–286.

    Article  Google Scholar 

  • Pauwels, F. (1980). Biomechanics of the Locomotor Apparatus. Contributions on the Functional Anatomy of the Locomotor Apparatus. Springer-Verlag, New York.

    Google Scholar 

  • Peccei, J.S. (2001). A critique of the grandmother hypotheses: Old and new. Am. J. Hum. Biol. 13, 434–452.

    Article  Google Scholar 

  • Roesler, H. (1981). Some historical remarks on the theory of cancellous bone structue (Wolff’s law). In S.C. Cowin (ed.), Mechanical Properties of Bone. American Society of Mechanical Engineers, New York, pp. 27–42.

    Google Scholar 

  • Roesler, H. (1987). The history of some fundamental concepts in bone biomechanics. J. Biomech. 20, 1025–1034.

    Article  Google Scholar 

  • Roux, W. (1881). Der zuchtende Kampf der Teile, oder die ‘Teilauslese’ im Organismus (Theorie der ‘funktionellen Anpassung’). Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Schaffler, M.B. (1990). Immobilization induced bone loss: quantitative histological studies of cortical bone resorption. Trans. Orthop. Res. Soc. 15, 187.

    Google Scholar 

  • Schaffler, M.B. and Burr, D.B. (1984). Primate cortical bone microstructure: Relationship to locomotion. Am. J. Phys. Anthropol. 65, 191–197.

    Article  Google Scholar 

  • Schiessl, H., Frost, H.M., and Jee, W.S.S. (1998). Estrogen and bone-muscle strength and mass relationships. Bone 22, 1–6.

    Article  Google Scholar 

  • Skerry, T.M., Bitensky, L., Chayen, J., and Lanyon, L.E. (1989). Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J. Bone Miner. Res. 4, 783–788.

    Article  Google Scholar 

  • Talmage, R.V., Lester, G.E., and Hirsch, P.F. (2000). Parathyroid hormone and plasma calcium control: An editorial. J. Musculoskeletal Neuronal Interactions 1, 121–126.

    Google Scholar 

  • Taylor, D. and Kuiper, J.-H. (2001). The prediction of stress fraclures using a “stressed volume” concept. J. Orthop. Res. 19, 919–926.

    Article  Google Scholar 

  • Taylor, D., O’Brien, F., Prina-Mello, A., Ryan, C, O’Reilly, P., and Lee, T.C. (1999). Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results. J. Biomech. 32, 1199–1203.

    Article  Google Scholar 

  • Thompson, D.A.W. (1956). On Magnitude. In J.R. Newman (ed.), The World of Mathematics. Simon and Shuster, New York, 1001–1046.

    Google Scholar 

  • Turner, C.H. (1991). Editorial: Do estrogens increase bone formation? Bone 12, 305–306.

    Article  Google Scholar 

  • Turner, C.H. and Forwood, M.R. (1995). What role does the osteocyte network play in bone adaptation? Bone 16, 283–285.

    Article  Google Scholar 

  • Turner, R.T., Colvard, D.S., and Spelsberg, T.C. (1990a). Estrogen inhibition of periosteal bone formation in rat long bones: Down-regulation of gene expression for bone matrix proteins. Endocrinology 127, 1346–1351.

    Article  Google Scholar 

  • Turner, R.T., Hannon, K.S., Demers, L.M., Buchanan, J., and Bell, N.H. (1989). Differential effects of gonadal function on bone histomorphometry in male and female rats. J. Bone Miner. Res. 4, 557–563.

    Article  Google Scholar 

  • Turner, R.T., Wakley, G.K., and Hannon, K.S. (1990b). Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J. Orthop. Res. 8, 612–617.

    Article  Google Scholar 

  • Uhthoff, H.K. (1982). The influence of mechanical factors of the activity of the three bone envelopes. Acta Orthop. Belg. 48, 563–575.

    Google Scholar 

  • Verborgt, O., Gibson, G.J., and Schaffler, M.B. (2000). Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15, 60–67.

    Article  Google Scholar 

  • Weinbaum, S., Cowin, S.C., and Zeng, Y. (1994). A model for the excitation of osteocytes by mechanical loadinginduced bone fluid shear stresses. J. Biomech. 27, 339–360.

    Article  Google Scholar 

  • Wolff, J. (1892a). Das Gasetz der Transformation der Knochen. Hirschwald, Berlin.

    Google Scholar 

  • Wolff, J. (1892b). The Law of Bone Remodeling. Springer-Verlag, Berlin.

    Google Scholar 

  • Woo, S.L.Y., Gomez, M.A., Amiel, D., Ritter, M.A., Gelberman, R.H., and Akeson, W.H. (1981). The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. J. Biomech. Eng. 103, 51–56.

    Article  Google Scholar 

  • Wronski, T.J., Lowry, P.L., Waish, C.C., and Ignaszewski, L.A. (1985). Skeletal alterations in ovariectomized rats. Calcif. Tissue Int. 37, 324–328.

    Article  Google Scholar 

  • Zaman, G., Cheng, M.Z., Jessop, H.L., White, R., and Lanyon, L.E. (2000). Mechanical strain activates estrogen response elements in bone cells. Bone 27, 233–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B. (2003). Functional Adaptation and Fragility of the Skeleton. In: Agarwal, S.C., Stout, S.D. (eds) Bone Loss and Osteoporosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8891-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8891-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4708-8

  • Online ISBN: 978-1-4419-8891-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics