Detection of Her-2/Neu Cep 17 Mutations at Invasive Bladder Cancer

  • Gerhard Feil
  • F. Steffen Krause
  • Andreas Zumbraegel
  • Karl-H. Bichler


Transitional cell carcinoma (TCC) of the urinary bladder is the eighth most common cancer in Germany;1 the tumor varies greatly in its biological behavior. Of superficial TCC (Ta, Tl), up to 70% will eventually be recurrent; 10 to 15% will progress to muscle invasion (≥ T2).4 About 50% of patients with muscle-invasive bladder tumors subsequently develop metastases.34,35


Tyrosine Adenocarcinoma Oncol DAPI Xylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker N, Wahrendorf J: Krebsatlas der Bundesrepublik Deutschland 1981–1990. Berlin: Springer-Verlag, 1997.Google Scholar
  2. 2.
    Berger CS, Sandberg AA, Todd IA, Pennington RD, Haddad FS, Hecht BK, et al: Chromosomes in kidney, ureter, and bladder cancer. Cancer Genet Cytogenet, 23:1, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Berger CS, Lutz MD, Miles BJ, Farah RN, Weiss L, Van Dyke DL: Tumor behaviour in transitional cell carcinoma of the bladder in relation to chromosomal markers and histopathology. Cancer Res, 47:6800, 1987.Google Scholar
  4. 4.
    Bichler K-H, Einführung: In: K-H. Bichler et al, eds. Diagnostik und Therapie des Harnblasenkarzinoms, Reinbek: Einhorn-Presse Verlag, 9–13, 1998.Google Scholar
  5. 5.
    Bichler K-H, Wechsel HW, Lahme S, Wilbert DM, Strohmaier WL: Die Stellung der transurethralen Elektroresektion in der Behandlung des Harnblasenkarzinoms (differenzierende transurethrale Resektion). In: K-H. Bichler et al., eds. Diagnostik und Therapie des Harnblasenkarzinoms, Reinbek: Einhorn-Presse Verlag, 82–91. 1998.Google Scholar
  6. 6.
    Böcking A, Schunk K, Auffermann W: Exfoliative-cytologic diagnosis of basal-cell carcinoma with the use of DNA image cytometry. Acta Cytologica, 31:143, 1987.PubMedGoogle Scholar
  7. 7.
    Böcking A: Diagnostische DNS-Zytometrie des Urothels. In: Rathert P, Roth S, eds. Urinezytologie. Berlin: Springer Verlag, 147–170, 1995.Google Scholar
  8. 8.
    Böhm N: Einfluß der Fixierung und der Säurekonzentration auf die Feulgen-Hydrolyse bei 28°C. Histochemie, 14:201, 1968.PubMedCrossRefGoogle Scholar
  9. 9.
    Böhm N, Sprenger E, Schluter G, Sandritter W: Proportionalitätsfehler bei der Feulgen-Hydrolyse. Histochemie, 15:194, 1968.PubMedCrossRefGoogle Scholar
  10. 10.
    Coomb LM, Pigott DA, Sweeney E: Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer, 63:601, 1991.CrossRefGoogle Scholar
  11. 11.
    Cremer TH, Jauch A, Ried TH, Schöck E, Lengauer CH, Cremer M, et al: Fluoreszenz-in-situ-Hybridisierung. Dt Ärzteblatt, 22:1177, 1985.Google Scholar
  12. 12.
    Feulgen R, Rosenbeck H: Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkulturen in mikroskopischen Präparaten. Zeitschrift für Physiologische Chemie, 135:203, 1924.CrossRefGoogle Scholar
  13. 13.
    Fisher HAG, White MD, Graber MW, Sheehan CE, Ross JS: Use of HER-2/neu gene expression to predict clinical outcome in patients with transitional cell carcinoma of the urinary bladder. J Urol, 159:165, 1998.Google Scholar
  14. 14.
    Gibas Z, Prout GR, Connolly Jr. JG, Pontes JE, Sandberg AA: Nonrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res, 44:1257, 1984.PubMedGoogle Scholar
  15. 15.
    Graumann W: Zur Standardisierung des Schiffschen Reagens. Zt wissenschaftliche. Mikroskopie, 61:225, 1953.Google Scholar
  16. 16.
    Hermanek P, Sobin LK: UICC International Union Against Cancer. In: TMN Classification of Malignant Tumours. Berlin: Springer Verlag, 133–135, 1987.CrossRefGoogle Scholar
  17. 17.
    Hopmann AH, Poddighe PJ, Smeets AW, Moesker O, Beck JL, Vooijs GP, et al: Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am J Pathol, 135:1105, 1989.Google Scholar
  18. 18.
    Hopmann AH, Moesker O, Smeets AWGB, Pauwels RPE, Vooijs GP, Rameakers FC: Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res, 51:644, 1991.Google Scholar
  19. 19.
    Hurwitz E, Stancovski I, Sela M, Yarden Y: Suppression and promotion of tumor growth by monoclonal antibodies to erbB-2 differentially correlate with cellular uptake. Proc Natl Acad Aci USA, 92:3353, 1985.CrossRefGoogle Scholar
  20. 20.
    Jacobellis U, Paradisco A, Tommasi S, Ricco R, Napoli A, Catucci O, et al: HER-2/neu in bladder carcinoma. Acta Urol Ital, 13(2): 129, 1999.Google Scholar
  21. 21.
    Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufmann Jr RP, Muraca PJ, et al: Correlation of p34cdc2 cyclin-dependent kinase overexpression, CD44s downregulation, and HER-2/neu oncogene amplifikation with recurrence in prostatic adenocarcinomas. J Clin Oncol, 16:1302, 1998.PubMedGoogle Scholar
  22. 22.
    Lau JLT, Fowler JE, Ghosh L: Epidermal growth factor in the normal and neoplastic kidney and bladder. J Urol, 139:175, 1988.Google Scholar
  23. 23.
    Mahdy E, Yoshihiro S, Zech L, Wester K, Pan Y, Busch C, et al: Comparison of comparative genomic hybridisation, fluorescence in situ hybridisation and flow cytometry in urinary bladder cancer. Anticancer Res, 19:7, 1999.PubMedGoogle Scholar
  24. 24.
    Matsumura K, Kallioniemi A, Kallioniemi O, Chen L, Smith HS, Smith D, et al: Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res, 52:3474, 1992.PubMedGoogle Scholar
  25. 25.
    Mayall BH: Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res, 51:3807, 1991.PubMedGoogle Scholar
  26. 26.
    Meloni MM, Peier AM, Hadard FS, Powell IJ, Block AMW, Huben RP, et al: A new approach in the diagnosis and follow up of bladder cancer. Cancer Genet Cytogenet, 71:105, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Neal DE, Sharpies L, Smith K, Fenelly J, Hall RR, Harris AL: The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer, 65:1619, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Nemoto R, Nakamur I, Uchida K, Harada M: Numerical chromosome aberrations in bladder cancer detected by in situ hybridization. Br J Urol, 75:470, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Presti JC, Reuter VE, Galan T, Fair WR, Cordon-Cardo C: Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res, 51:5405, 1991.PubMedGoogle Scholar
  30. 30.
    Pycha A, Mian C, Hofbauer J, Brossner C, Haitel A, Wiener H, et al: Multifocality of transitional cell carcinoma results from genetic instability of entire transitional epithelium. Urology 53:92, 1999.PubMedCrossRefGoogle Scholar
  31. 31.
    Riben MW, Malfetano JH, Nazeer T, Muraca PJ, Ambros RA, Ross JS: Identification of Her-2/neu oncogene amplification by fluorescence in situ hybridisation in stage I endometrial carcinoma. Mod Pathol, 10:823, 1997.PubMedGoogle Scholar
  32. 32.
    Rubben H, Lutzeyer W, Wallace DMA: The epidemiology and etiology of bladder cancer. In: Bladder Cancer. Berlin: Springer-Verlag, 1985.Google Scholar
  33. 33.
    Sandberg AA, Berger CS: Review of chromosome studies in urological tumors: Cytogenetics and molecular genetics of bladder cancer. J Urol, 151:545, 1994.PubMedGoogle Scholar
  34. 34.
    Sauter G, Moch H, Carroll P, Kerschmann R, Mihatsch MJ, Waldmann FM: Chromosome-9 loss detected by fluorescence on situ hybridisation in bladder cancer. Int J Cancer, 64:99, 1995.PubMedCrossRefGoogle Scholar
  35. 35.
    Schalken JA, Schalken MJ: Prognostic indicators of bladder cancer. Cur Opinon Urol, 5:272, 1995.Google Scholar
  36. 36.
    Semba K, Kamata N, Toyoshima K, Yamamoto T: A v-erbB-related protooncogene, c-erbB homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Proc Natl Acad SCI USA, 82:6497, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Slamon DJ, Godolphin W, Jones LA: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244:707, 1989.PubMedCrossRefGoogle Scholar
  38. 38.
    Vanni R, Peretti D, Scarpa RM, Usai E: Derivative 11 marker chromosome in bladder carcinoma. Cancer Genet Cytogenet, 164:289, 1985.CrossRefGoogle Scholar
  39. 39.
    Werner W, Junker K, Ebert W, Muller C, Schubert J: Zytogenetische Veränderungen beim Harnblasenkarzinom — Einsatz der Fluoreszenz-In-Situ-Hybridisierung (FISH). In: Bichler K-H et al., eds. Diagnostik und Therapie des Harnblasenkarzinoms. Reinbek: Einhorn-Presse Verlag, 350, 1998.Google Scholar
  40. 40.
    Wheeless LL, Reeder JE, Han MJ, O’Connell R, Frank IN, Cockett ATK, et al: Bladder irrigation specimens assayed by fluoresence in situ hybridisation to interphase nuclei. Cytometry-, 17:319, 1994.PubMedCrossRefGoogle Scholar
  41. 41.
    Yokata J, Yamamoto T, Toyoshima K: Amplification of c-erbB-2 oncogene in human adenocarcinomatas in vivo. Lancet, 1:765, 1986.CrossRefGoogle Scholar
  42. 42.
    Zhang FF, Arber DA, Wilson TG, Kawachi MH, ad Slovak ML: Toward the validation of aneusomy detection by fluorescence in situ hybridisation in bladder cancer: comparative analysis with cytology, cytogenetics, and clinical feature predicts recurrence and defines clinical testings limitations. Clin Cancer Res, 3:2317, 1997.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gerhard Feil
    • 1
  • F. Steffen Krause
    • 1
  • Andreas Zumbraegel
    • 1
  • Karl-H. Bichler
    • 1
  1. 1.Department of UrologyEberhard-Karls-University of TuebingenTübingenGermany

Personalised recommendations