Antibodies pp 141-155 | Cite as

Antibodies, a Potent Tool to Target Genes into Designated Cells and Tissues

  • Francois Hirsch
  • Olivier Deas
  • Gabrielle Carvalho
  • Antoine Dürrbach
  • Dominique Thierry
  • Alain Chapel

Abstract

After a period of euphoria following the report on the first ex vivo production of monoclonal antibodies (Köhler, 1975), the new “magic bullets” as they were qualified by the press, however did not keep theirs promise. Indeed, apart OKT3 a mouse mAb directed against the T lymphocyte CD3 molecule, the first to get US and European approvals in the prevention of organ rejection in 1986, several trials conducted with other mAbs did not show significant results. These poor effects were mainly due to generation of anti-murine Abs by the patients, hindering the efficacy of the treatment. Moreover, rodent IgG Abs injected to patients have half-life of less than 20 hrs compared to several days for human Igs.

Keywords

Toxicity Saccharide Lymphoma Ethylene Glycol Cystein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angevin, E., L. Glukhova, C. Pavon, A. Chassevent, M. J. Terrier-Lacombe, A. F. Goguel, J. Bougaran, P. Ardouin, B. H. Court, J. L. Perrin, G. Vallancien, F. Triebel, and B. Escudier. 1999. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest 79:879.PubMedGoogle Scholar
  2. Arafat, W. O., et al. 2000. An adenovirus encoding proapoptotic Bax induces apoptosis and enhances the radiation effect in human ovarian cancer. Mol Ther 1:545.PubMedCrossRefGoogle Scholar
  3. Bartlett, J. S., J. Kleinschmidt, R. C. Boucher, and R. J. Samulski. 1999. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 17:181.PubMedCrossRefGoogle Scholar
  4. Chapel, A., P. Poncet, T. M. A. Neildez-Nguyen, J. Vétillard, N. Brouard, C. Goupy, G. Chavanel, F. Hirsch, and D. Thierry. 1999. Targeted transfection of IL-3 gene into primary human hematopoietic progenitor cells through the c-kit receptor. Exp Hematol 27:250.PubMedCrossRefGoogle Scholar
  5. Déas, O., E. Angevin, C. Cherbonnier, A. Senik, B. Charpentier, J. P. Levillain, E. Oosterwijk, F. Hirsch, and A. Durrbach. 2002. In vivo-targeted gene delivery using antibody-based nonviral vector. Hum Gene Ther 13:1101.PubMedCrossRefGoogle Scholar
  6. Dürrbach, A., E. Angevin, P. Poncet, M. Rouleau, G. Chavanel, A. Chapel, D. Thierry, A. Goiter, R. Hirsch, B. Charpentier, A. Senik, and F. Hirsch. 1999. The antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal-cell carcinoma in vitro. Cancer Gene Ther 6:564.PubMedCrossRefGoogle Scholar
  7. Erbacher, P., T. Bettinger, P. Belguise-Valladier, S. Zou. J. L. Coll. J. P. Behr, and J. S. Remy. 1999. Transfection and physical properties of various saccharide. poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J Gene Med 1:210.PubMedCrossRefGoogle Scholar
  8. Goud, B., P. Legrain, and G. Buttin. 1988. Antibody-mediated binding of a murine ecotropic moloney retroviral vector to human cells allows internalization but not the establishment of the pro viral state. Virology 163:251.PubMedCrossRefGoogle Scholar
  9. Heim, D. A., and C. E. Dunbar. 2000. Hematopoietic stem cell gene therapy: towards clinically significant gene transfer efficiency. Immunol Rev 178:29.PubMedCrossRefGoogle Scholar
  10. Henkart, P. A. 1996. ICE family proteases: mediators of all apoptotic cell death? Immunity 4:195.PubMedCrossRefGoogle Scholar
  11. Hirsch, F., P. Poncet, S. Freeman, R. E. Gress, D. H. Sachs, P. Druet, and R. Hirsch. 1993. Antifection: a new method for targeted gene transfection. Transpl Proc 25:138.Google Scholar
  12. Kohler, G., and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495.PubMedCrossRefGoogle Scholar
  13. Knudson, C. M., and S. J. Korsmeyer. 1997. Bcl-2 and Bαχ function independently to regulate cell death. Nature Genetics 16:358.PubMedCrossRefGoogle Scholar
  14. Mastrobattista, E., R. H. Kapel, M. H. Eggenhuisen, P. J. Roholl, D. J. Crommelin, W. E. Hennink, and G. Storm. 2001. Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Ther 8:405.PubMedCrossRefGoogle Scholar
  15. Maurice, M., E. Verhoeyen, P. Salmon, D. Trono, S. J. Russell, and F. L. Cosset. 2002. Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 99:2342.PubMedCrossRefGoogle Scholar
  16. Mulders, P., R. Figlin, J. B. deKernion, R. Wiltrout, M. Linehan, D. Parkinson, W. deWolf, and A. Belldegrun. 1997. Renal cell carcinoma: recent progress and future directions. Cancer Res 57:5189.PubMedGoogle Scholar
  17. O’Neill, M. M., C. A. Kennedy, R. W. Barton, and R. J. Tatake. 2001. Receptor-mediated gene delivery to human peripheral blood mononuclear cells using anti-CD3 antibody coupled to polyethylenimine. Gene Ther 8:362.PubMedCrossRefGoogle Scholar
  18. Oosterwijk, E., D. J. Ruitter, P. J. Hoedemaeker, E. K. J. Pauwels, U. Jonas, J. Zwartendijck, and S. O. Wamaar. 1986. Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489.PubMedCrossRefGoogle Scholar
  19. Oosterwijk, E., F. M. J. Debruyne, and J. A. Schalken. 1995. The use of monoclonal antibody G250 in the therapy of renal-cell carcinoma. Semin Oncol 22:34.PubMedGoogle Scholar
  20. Pelegrin, M., M. Marin, D. Noel, and M. Piechaczyk. 1998. Genetically engineered antibodies in gene transfer and gene therapy. Hum Gene Ther 9:2165.PubMedCrossRefGoogle Scholar
  21. Perales, J. C., T. Ferkol, H. Beegen, O. D. Ratnoff, and R. W. Hanson. 1994. Gene transfer in vivo: Sustained expression and regulation of genes introduced into the liver by receptortargeted uptake. Proc Natl Acad Sci USA 91:4086.PubMedCrossRefGoogle Scholar
  22. Poncet, P., A. Panczak, C. Goupy, K. Gustafsson, C. Blanpied, G. Chavanel, R. Hirsch, and F. Hirsch. 1996. Antifection: an antibody-mediated method to introduce genes into lymphoid cells in vitro and in vivo. Gene Ther 3:731.PubMedGoogle Scholar
  23. Roselli, M., F. Guadagni, O. Buonomo, A. Belardi, P. Ferroni, A. Diodati, D. Anselmi, C. Cipriani, C. U. Casciani, J. Greiner, and J. Schlom. 1996. Tumor markers as targets for selective diagnostic and therapeutic procedures. Anticancer Res 16:2187.PubMedGoogle Scholar
  24. Sato, N., C. Caux, T. Kitamura, Y. Watanabe, K. Arai, J. Banchereau, and A. Miyajima. 1993. Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood 82:752.PubMedGoogle Scholar
  25. Schwarzenberger, P., S. E. Spence, J. M. Gooya, D. Michiel, D. T. Curiel, F. W. Ruscetti, and J. R. Keller. 1996. Targeted gene transfer to human hematopoietic progenitor cell lines through the c-kit receptor. Blood 67:472.Google Scholar
  26. Shi, N., and W. M. Pardridge. 2000. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 97:7567.PubMedCrossRefGoogle Scholar
  27. Tai, Y. T., T. Strobel, D. Kufe, and S. A. Cannistra. 1999. In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene. Cancer Res 59:2121.PubMedGoogle Scholar
  28. Templeton, N. S., D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis. 1997. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647.PubMedCrossRefGoogle Scholar
  29. Tsuruta, Y., M. Mandai, I. Konishi, H. Kuroda, T. Kusakari, Y. Yura, A. A. Hamid, I. Tamura, M. Kariya, and S. Fujii. 2001. Combination effect of adenovirus-mediated pro-apoptotic bax gene transfer with cisplatin or paclitaxel treatment in ovarian cancer cell lines. Eur J Cancer 37:531.PubMedCrossRefGoogle Scholar
  30. Wagemaker, G., K. J. Neelis, and A. W. Wognum. 1995. Surface markers and growth factor receptors of immature hemopoietic stem cell subsets. Stem Cells 13Suppl 1:165.PubMedGoogle Scholar
  31. Wagner, E., M. Zenke, M. Cotten, H. Beug, and M. L. Birnstiel. 1990. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 87:3410.PubMedCrossRefGoogle Scholar
  32. Wang, R. F., and S. A. Rosenberg. 1999. Human tumor antigens for cancer vaccine development. Immunol Rev 170:85.PubMedCrossRefGoogle Scholar
  33. Weichselbaum, R. R., and D. Kufe. 1997. Gene therapy of cancer. Lancet 349:10.CrossRefGoogle Scholar
  34. Wickham, T. J. 2000. Targeting adenovirus. Gene Ther 7:110.PubMedCrossRefGoogle Scholar
  35. Xu, L., C. C. Huang, W. Huang, W. H. Tang, A. Rait, Y. Z. Yin, I. Cruz, L. M. Xiang, K. F. Pirollo, and E. H. Chang. 2002. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337.PubMedCrossRefGoogle Scholar
  36. Zenke, M., P. Steinlein, E. Wagner, M. Cotten, H. Beug, and M. L. Birnstiel. 1990. Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc Natl Acad Sci USA 87:3655.PubMedCrossRefGoogle Scholar
  37. Zhang, Y., H. Jeong Lee, R. J. Boado, and W. M. Pardridge. 2002. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 4:183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Francois Hirsch
    • 1
  • Olivier Deas
    • 1
    • 2
  • Gabrielle Carvalho
    • 1
  • Antoine Dürrbach
    • 1
  • Dominique Thierry
    • 3
  • Alain Chapel
    • 3
  1. 1.GDR 2352 “immunotargeting of tumors”Inserm unit 542, Paris-Sud UniversityFrance
  2. 2.Targa TherapiesVillejuif
  3. 3.Institute of Radioprotection and Nuclear Safety, IRSN/DPHD/SARAMFontenay-aux-RosesFrance

Personalised recommendations