Skip to main content

Achieving Appropriate Glycosylation During the Scaleup of Antibody Production

  • Chapter
Antibodies

Abstract

Glycosylation is the most extensive and variable of mammalian posttranslational modifications with profound implications for folding, stability, pharmacokinetics, antigenicity and biological activity of proteins. In the last several decades, improvements in the technology for analyzing protein glycosylation and measuring its biological effects have revolutionized the discipline of “glycobiology”. Thus, extremely subtle alterations in glycoproteins can now be detected, and appropriate modifications brought about which were nearly impossible 20 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abiko, Y. 2000. Passive immunization against dental caries and periodontic disease: development of recombinant and human monoclonal antibodies. Crit Rev Oral Biol Med 11(2): 140–158.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, D. C, Goochee, C. F., Cooper, G. and Weitzhandler, M. 1994. Monosaccharide and oligosaccharide analysis of isoelectric focusing-separated and blotted granulocyte colony-stimulating factor glycoforms using high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 4(4):459–467.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, R.E. 1987. Nonenzymatically glycosylated proteins. Adv Clin Chem 26:1–78.

    Article  PubMed  CAS  Google Scholar 

  • Borrebaeck, C. K., Malmborg, A. C. and Ohlin, M. 1993. Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol Today 14(10): 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Borys, M.C., Linzer, D.I., Papoutsakis, E.T. 1994. Cell aggregation in a Chinese hamster ovary cell microcarrier culture affects the expression rate and N-linked glycosylation of recombinant mouse placental lactogen-1. Ann N Y Acad Sci 745:360–371.

    Article  PubMed  CAS  Google Scholar 

  • Chargelegue, D., Vine, N. D., van Dolleweerd, C. J., Drake, P. M. and Ma, J. K. 2000. A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res 9(3): 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Choi, B. K., Bleck, G. T. and Jimenez-Flores, R. 2001. Cation-exchange purification of mutagenized bovine beta-casein expressed in transgenic mouse milk: its putative Asn68-linked glycan is heterogeneous. J Dairy Sci 84(l):44–49.

    Article  PubMed  CAS  Google Scholar 

  • Das, R., and Morrow, K. J. 2002. Antibody Engineering: Technologies, Applications and Business Opportunities Report 9038. D&MD Reports. Westborough, MA.

    Google Scholar 

  • Dwek, R. A. 1995. Glycobiology: more functions for oligosaccharides. Science 269(5228):1234–1235.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, U., Phillips, J., Artsaenko, O. and Conrad, U. 1997. Optimization of scFv antibody production in transgenic plants. Immunotechnology 3(3):205–216.

    Article  PubMed  CAS  Google Scholar 

  • Gauny, S. S., Andya, J., Thomson, J., Young, J. D. and Winkelhake, J.L. 1991. Effect of production method on the systemic clearance rate of a human monoclonal antibody in the rat. Hum Antibodies Hybridomas 2(1): 33–38

    PubMed  CAS  Google Scholar 

  • Gillies, S.D., Morrison, S.L., Oi, V.T., Tonegawa, S. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33(3): 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Hamadeh, R. M., Jarvis, G. A., Zhou, P., Codeur, A. C. and Griffiss, J. M. 1996. Bacterial enzymes can add galactose alpha 1,3 to human erythrocytes and creates a senescence-associated epitope. Infect Immun 64(2): 528–34.

    PubMed  CAS  Google Scholar 

  • Hayter, P. M., Curling, E. M., Gould M. L., Baines, A. J., Jenkins, N., Salmon, I., Strange, P. G., and Bull, A. T. 1993. The effect of dilution rate on CHO cell physiology and recombinant interferon γ production in glucose limited chemostat culture. Biotechnol Bioengineer 42: 1077–1085.

    Article  CAS  Google Scholar 

  • Hein, M. B., Tang, Y., McLeod, D.A., Janda, K. D. and Hiatt, A. 1991. Evaluation of immunoglobulins from plant cells. Biotechnol Prog 7(5):455–61

    Article  PubMed  CAS  Google Scholar 

  • Hiatt, A. 1992. Monoclonal antibody engineering in plants. FEBS Lett. 307(1): 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Jefferis, R. and Lund, J. 1997. Glycosylation of antibody molecules: structure and functional significance. Chem. Immnol 65:111–128

    CAS  Google Scholar 

  • Jefferis, R., Takahashi, N., Lund, J., Tyler, R., Hindley, S. 1992. Does an antibody molecule act as a template directing (determining) its glycosylation? Biochem Soc Trans. 20(2): 228S.

    PubMed  CAS  Google Scholar 

  • Jenkins, N. Growth factors. 1992. In: Mammalian Cell Biotechnology, A Practical Approach (Butler, M. ed). pp 39–55. Oxford University Press. Oxford, UK.

    Google Scholar 

  • Jenkins, N. and Curling, E. M. 1994. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 16(5): 354–364.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, N., Parekh, R. B., and James, D. C. 1996. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14(8): 975–981.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. M., Watkins, J., Scopes, P. M. and Tracey, B. M. 1974. Differences in serum IgG structure in health and rheumatoid disease. Circular dichroism studies. Ann Rheum Dis 33(4): 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld, R., Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, J., Morita, I., Kawanishi, K., Tagahara, K., Kobayashi, N. 2003. Capillary Electrophoresis for Simultaneous Determination of Emodin, Chrysophanol, and Their 8-beta-D-Glucosides. Chem Pharm Bull (Tokyo) 51(4): 418–420.

    Article  CAS  Google Scholar 

  • Kumar, M., Mishra, N. and Upreti, R. K. 2003. A novel membrane glycoprotein of Escherichia coli. J Basic Microbiol 43(1): 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Kumpel, B. M., Rademacher, T. W., Rook, G. A., Williams, P. J. and Wilson, I. B. 1994. Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum Antibodies Hybridomas 5(3-4): 143–151.

    PubMed  CAS  Google Scholar 

  • Kunkel, J.P., Jan, D.C., Butler, M., Jamieson, J.C. 2000. Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog 16(3): 462–470.

    Article  PubMed  CAS  Google Scholar 

  • Lapuk, V. A., Timofeev, V. P., Tchukchrova, A. I., Khatiashvili, N. M. and Kiseleva, T. M. 1984. Some peculiarities of the dynamics of the immunoglobulin M structure. J Biomol Struct Dyn 2(1): 63–76.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. U., Roth, J. and Paulson, J. C. 1989. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264(23): 13848–13855.

    PubMed  CAS  Google Scholar 

  • Lee, J., Sundaram, S., Shaper, N. L., Raju, T. S. and Stanley, P. 2001. Chinese hamster ovary (CHO) cells may express six beta 4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-l, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem 276(17): 13924–13934.

    PubMed  CAS  Google Scholar 

  • Leibiger, H., Hansen, A., Schoenherr, G., Seifert, M., Wustner, D., Stigler, R. and Marx, U. 1995. Glycosylation analysis of a polyreactive human monoclonal IgG antibody derived from a human-mouse heterohybridoma. Mol Immunol 32(8): 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. U., Roth, J. and Paulson, J. C. 1989. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactosidase alpha 2,6-sialyltransferase. J Biol Chem 264(23): 13848–13855.

    PubMed  CAS  Google Scholar 

  • Leibiger, H., Wustner, D., Stigler, R.D., Marx, U. 1999. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem J 338 (Pt 2): 529–538.

    Article  PubMed  CAS  Google Scholar 

  • Lifely, M. R., Hale, C., Boyce, S., Keen, M. J. and Phillips, J. 1995. Glycosylation and biological activity of CAMP ATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5(8): 813–822.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J., Takahashi, N., Nakagawa, H., Goodall, M., Bentley, T., Hindley, S.A., Tyler, R., Jefferis, R. 1993. Control of IgG/Fc glycosylation: a comparison of oligosaccharides from chimeric human/mouse and mouse subclass immunoglobulin Gs. Mol Immunol 30(8):741–748.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., Lehner, T. 1995. Generation and assembly of secretory antibodies in plants. Science 268(5211): 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Marx, U. 1998. Membrane-based cell culture technologies: a scientifically and economically satisfactory alternative to malignant ascites production for monoclonal antibodies. Res Immunol 149(6): 557–559.

    Article  PubMed  CAS  Google Scholar 

  • Monica, T. J., Goochee, C. F. and Maiorella, B. L. 1993. Comparative biochemical characterization of a human IgM produced in both ascites and in vitro cell culture. Biotechnology 11(4): 512–515.

    Article  PubMed  CAS  Google Scholar 

  • Monica, T. J., Williams, S.B., Goochee, C.F., Maiorella, B.L. 1995. Characterization of the glycosylation of a human IgM produced by a human-mouse hybridoma. Glycobiology 5(2): 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, H., Nishikawa, A., Karasuno, T., Nishiura, T., Iida, M., Kanayama, Y., Yonezawa, T., Tarai, S., Taniguchi, N. 1990. n-butyrate reduces the expression of beta-galactoside alpha 2,6-sialyltransferase in Hep G2 cells. Biochem Biophys Res Commun 172(3): 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  • Patel, T.P., Parekh, R.B., Moellering, B.J., Prior, C.P. 1992 Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 285(Pt 3): 839–84

    PubMed  CAS  Google Scholar 

  • Potter, M. and Lieberman, R. 1970. Common individual antigenic determinants in five of eight BALB-c IgA myeloma proteins that bind phosphoryl choline. J Exp Med 132(4): 737–751.

    Article  PubMed  CAS  Google Scholar 

  • Rabina, J., Maki, M., Savilahti, E.M., Jarvinen, N., Penttila, L. and Renkonen, R. 2001. Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycoconj J 18(10): 799–805.

    Article  PubMed  CAS  Google Scholar 

  • Raju, T. S., Briggs, J. B., Chamow, S. M., Winkler, M. E., and Jones, A. J. S. 2001. Glycoengineering of Therapeutic Glycoproteins: In vitro galactosylation and sialylation of glycoproteins with terminal N-Acetylglucosamine and galactose residues. Biochemistry 40(30): 8868–8876.

    Article  PubMed  CAS  Google Scholar 

  • Robbe, C., Capon, C., Flahaut, C. and Michalski, J.C. 2003. Microscale analysis of mucin-type O-glycans by a coordinated and mass spectrometry approach. Electrophoresis 24(4): 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, P. M., Leatherbarrow, R. J., Rademacher, T. W., Dwek, R.A. 1991. Diversification of the IgG molecule by oligosaccharides. Mol Immuno 128(12): 1369–1378.

    Article  Google Scholar 

  • Rudisser, S., Jahnke W. 2002. NMR and in silico screening. Comb Chem High Throughput Screen 5(8):591–603.

    Article  PubMed  CAS  Google Scholar 

  • Schenerman, M. A., Hope, J. N., Kletke, C., Singh, J. K., Kimura, R., Tsao, E. I. and Folena-Wasserman G. 1999. Comparability testing of a humanized monoclonal antibody (Synagis) to support cell line stability, process validation, and scale-up for manufacturing. Biologicals 27(3): 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S., Lance, P., Smith, T. J., Berenson, C. S., Cohen, S. A., Horvath, P. J., Lau, J. T. and Baumann, H. 1992. n-butyrate reduces the expression of beta-galactoside alpha 2,6-sialyltransferase in Hep G2 cells. J Biol Chem 267(15): 10652–10658.

    PubMed  CAS  Google Scholar 

  • Silverman, H.S., Sutton-Smith, M., McDermott, K., Heal, P., Leir, S.H., Morris, H.R., Hollingsworth, M.A., Dell, A., Harris, A. 2003. The contribution of tandem repeat number to the O-Glycosylation of mucins. Glycobiology 13(4): 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, R. L., Fieser, T. M., Lerner, R. A. and Wilson, I. 1990. A Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science 248(4956): 712–719.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, P. 1992. Glycosylation Engineering. Glycobiology 2(2): 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Uesson, M., Hansson, U.B. 1982. Circular dichroism of immune complexes, IgG and Fab gamma with unique antigenic determinants from rheumatoid serum. Scand J Immunol 16(3): 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Umana, P., Jean-Mairet, J., Moudry, R, Amstutz, H., Bailey, J. E. 1999. Engineered glycoforms of an antineuroblastoma IgGl with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2): 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Van Berkel, P. H., Welling, M. M., Geerts, M., van Veen, H. A., Ravensbergen, B., Salaheddine, M., Pauwels, E. K., Pieper, F., Nuijens, J. H. and Nibbering, P. H. 2002. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20(5): 484–487.

    Article  PubMed  Google Scholar 

  • Wacker. M., Linton, D, Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wren, B. W. and Aebi, M. 2002. N-linked glycosyiation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599): 1790–1793.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., Nakouzi, A., Hogue Angeletti, R. and Casadevall, A. 2003. Site-specific characterization of the N-linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/ electrospray mass spectrometry. Anal Biochem. 314(2):266–280.

    Article  PubMed  CAS  Google Scholar 

  • Weikert, S., Papac, D., Briggs, J., Cowfer, D., Tom, S., Gawlitzek, M, Lofgren, J., Mehta, S., Chisholm, V., Modi, N., Eppler, S., Carroll, K., Chamow, S., Peers, D., Berman, P. & L. Krummen. 1999. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nature Biotechnology. 17: 1116–1121.

    Article  PubMed  CAS  Google Scholar 

  • Wormald, M. R., Rudd, P. M., Harvey, D. J., Chang, S. C, Scragg, I. G. and Dwek, R. A1997. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosyiation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36(6): 1370–1380.

    Article  Google Scholar 

  • Yoo, E. M., Koteswara, R., Chintalacharuvu, M. L. and Morrison, S. L. 2002. Myeloma expression systems. J. Immun Methods 261(1-2): 1–20.

    Article  CAS  Google Scholar 

  • Youings, A., Chang, S. C, Dwek, R. A. and Scragg, I. G. 1996. Site-specific glycosyiation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem J 314(2): 621–630.

    PubMed  Google Scholar 

  • Zeitlin, L., Olmsted, S. S., Moench, T. R., Co M. S., Martinell, B. J., Paradkar V. M., Russell, D.R., Queen, C., Cone, R.A. and Whaley, K. J. 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechno 16(13): 1361–1364.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deng, X.K., Shantha Raju, T., Morrow, K.J. (2004). Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. In: Subramanian, G. (eds) Antibodies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8877-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8877-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4702-6

  • Online ISBN: 978-1-4419-8877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics