The Evolution of High Visual Acuity in the Anthropoidea

Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Most definitions of the order primates make some reference to the importance of vision relative to the other special senses (Le Gros Clark, 1959; Martin, 1990; Napier and Napier, 1967). This characterization is particularly fitting for haplorhine primates, in which vision is unquestionably the dominant sensory modality. Anthropoids and tarsiers differ from strepsirrhines in exhibiting a derived reduction of the olfactory apparatus (Baron et al., 1983; Cave, 1973) and an elaboration of the visual sense to a degree that is unique among mammals (Rodieck, 1973; Walls, 1942). Visual adaptations, however, are divergent within the haplorhine suborder. While the tarsier visual system is primarily specialized for enhanced sensitivity in the context of nocturnal visual predation (Castenholz, 1984s), most living anthropoids are adapted for extremely acute diurnal vision.


Visual Acuity Optic Nerve Ganglion Cell Retinal Ganglion Cell Macular Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. L., and Horton, J. C., 2002, Shadows cast by retinal blood vessels mapped in primary visual cortex, Science 298: 572–576.PubMedCrossRefGoogle Scholar
  2. Ahnelt, P. K., Hokoç, J. N., and Röhlich, P., 1995, Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: Characterization with anti-opsin immunolabeling, Vis. Neurosci. 12: 793–804.Google Scholar
  3. Alfieri, R, Pariente, G., and Sole, P., 1976, Dynamic electroretinography in monochromatic lights and fluorescence retinography in lemurs, Doc. Ophthal. Proc. Ser. 10: 169–178.CrossRefGoogle Scholar
  4. Allman, J., 1977, Evolution of the visual system in early primates, Prog. Psychobiol. Physiol Psychol. 7: 1–53.Google Scholar
  5. Andrade da Costa, B. L. S., and Hokoç, J. N., 2000, Photoreceptor topography of the retina in the New World monkey Cebus apella, Vision Res. 40: 2395–2409.CrossRefGoogle Scholar
  6. Arey, L. B., Bruesch, S. R., and Castanares, S., 1942, The relation between eyeball size and the number of optic nerve fibers in the dog, J. Comp. Neurol. 76: 417–422.CrossRefGoogle Scholar
  7. Arrese, C., Dunlop, S. A., Harman, A. M., Braekevelt, C. R., Ross, W. M., Shand, J., and Beazley, L. D., 1999, Retinal structure and visual acuity in a polyprotodont marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), Brain Behav. Evol. 53: 111–126.PubMedCrossRefGoogle Scholar
  8. Arrese, C., Archer, M., Runham, P., Dunlop, S. A., and Beazley, L. D., 2000, Visual system in a diurnal marsupial, the numbat (Myrmecobius fasciatus): Retinal organization, visual acuity, and visual fields, Brain Behav. Evol. 55: 163–175.PubMedCrossRefGoogle Scholar
  9. Arrese, C., Archer, M., and Beazley, L. D., 2002, Visual capabilities in a crepuscular marsupial, the honey possum (Tarsipes rostratus): A visual approach to ecology, J. Zool. Lond. 256: 151–158.CrossRefGoogle Scholar
  10. Balliet, R. F., and Schusterman, R. J., 1971, Underwater and aerial visual acuity in the Asian “clawless” otter (Amblonyx cineria cineria), Nature 234: 305–306.PubMedCrossRefGoogle Scholar
  11. Barbour, H. R., Archer, M. A., Hart, N. S., Thomas, N., Dunlop, S. A., Beazley, L. D., and Shand, J., 2002, Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus, J. Comp. Neurol. 450: 334–344.CrossRefGoogle Scholar
  12. Baron, G., Frahm, H. D., Bhatnagar, K. P., and Stephan, H., 1983, Comparison of brain structure volumes in insectivora and primates. III. Main olfactory bulb (MOB), J. Hirnforsch. 24: 551–558.PubMedGoogle Scholar
  13. Beard, K. C., Krishtalka, L., and Stuckey, R. K., 1991, First skulls of the Early Eocene primate Shoshonius cooperi and the anthropoid-tarsier dichotomy, Nature 349: 64–67.PubMedCrossRefGoogle Scholar
  14. Beard, K. C., and MacPhee, R. D. E., 1994, Cranial Anatomy of Shoshonius and the Antiquity of Anthropoidea, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 55–97.Google Scholar
  15. Bennis, M., El Hassni, M., Rio, J.-P., Lecren, D., Repérant, J., and Ward, R., 2001, A quantitative ultrastructural study of the optic nerve of the chameleon, Brain Behav. Evol. 58: 49–60.PubMedCrossRefGoogle Scholar
  16. Berkley, M. A., 1976, Some Comments on Visual Acuity and its Relation to Eye Structure, in: Evolution of Brain and Behavior in Vertebrates, R. B. Masterton, C. B. G. Campbell, M. E. Bitterman, and N. Hotton, eds., John Wiley and Sons, New York, pp. 73–88.Google Scholar
  17. Birch, D., and Jacobs, G. H., 1979, Spatial contrast sensitivity in albino and pigmented rats, Vision Res. 19: 933–937.PubMedCrossRefGoogle Scholar
  18. Bisti, S., and Maffei, L., 1974, Behavioural contrast sensitivity of the cat in various visual meridians, J. Physiol Lond. 241: 201–210.PubMedGoogle Scholar
  19. Blake, R., Cool, S. J., and Crawford, M. L. J., 1974, Visual resolution in the cat, Vision Res. 14: 1211–1217.PubMedCrossRefGoogle Scholar
  20. Boire, D., Dufour, J.-S., Théoret, H., and Ptito, M., 2001, Quantitative analysis of the retinal ganglion cell layer in the ostrich, Struthio camelus, Brain Behav. Evol. 58: 343–355.CrossRefGoogle Scholar
  21. Bone, R. A., Landrum, J. T., and Tarsis, S. L., 1985, Preliminary identification of the human macular pigment, Vision Res. 25: 1531–1535.PubMedCrossRefGoogle Scholar
  22. Bova, L. M., Wood, A. M., Jamie, J. F., and Truscott, R. J. W., 1999, UV filter compounds in human lenses: The origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-ß-D-glucoside, Invest. Ophthalmol. Vis. Sci. 40: 3237–3244.PubMedGoogle Scholar
  23. Bowmaker, J. K., 1991, The Evolution of Vertebrate Visual Pigments and Photoreceptors, in: Evolution of the Eye and Visual System, J. R. Cronly-Dillon, and R. L. Gregory, eds., CRC Press, Boca Raton, pp. 63–81.Google Scholar
  24. Bowmaker, J. K., Hunt, S. A. D. M., Mollon, J. D., 1991, Photosensitive and photostable pigments in the retinae of old world monkeys, J. Exp. Biol. 156: 1–19.PubMedGoogle Scholar
  25. Braekevelt, C. R., Beazley, L. D., Dunlop, S. A., and Darby, J. E., 1986, Numbers of axons in the optic nerve and retinal ganglion cells during development in the marsupial Setonyx brachyurus, Dev. Brain Res. 25: 117–125.CrossRefGoogle Scholar
  26. Brooke, R N. L., Downer, J. C., and Powell, T. P. S., 1965, Centrifugal fibres to the retina in the monkey and cat, Nature 207: 1365–1367.PubMedCrossRefGoogle Scholar
  27. Bugge, J., 1974, The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to systematic classification, Acta Anat. 87(Supp. 62): 1–159.CrossRefGoogle Scholar
  28. Buttery, R. G., Haight, J. R., and Bell, K., 1990, Vascular and avascular retinae in mammals, Brain Behav. Evol. 35: 156–175.PubMedCrossRefGoogle Scholar
  29. Calderone, J. B., and Jacobs, G. H., 1999, Cone receptor variations and their functional consequences in two species of hamster, Vis. Neurosci. 16: 53–63.PubMedCrossRefGoogle Scholar
  30. Cartmill, M., 1970, The Orbits of Arboreal Mammals: A Reassessment of the Arboreal Theory of Primate Evolution, Doctoral dissertation, University of Chicago.Google Scholar
  31. Cartmill, M., 1980, Morphology, Function and Evolution of the Anthropoid Postorbital Septum, in: Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon, and A. B. Chiarelli, eds., Plenum Press, New York, pp. 243–274.CrossRefGoogle Scholar
  32. Cartmill, M., 1994, Anatomy, Antinomies, and the Problem of Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 549–565.Google Scholar
  33. Cartmill, M., and Kay, R. F., 1978, Cranio-dental Morphology, Tarsier Affinities, and Primate Sub-orders, in: Recent Advances in Primatology, D. J. Chivers, and K. A. Joysey, eds., Academic Press, New York, pp. 205–213.Google Scholar
  34. Castenholz, A., 1984, The Eye of Tarsius, in: Biology of Tarsiers, C. Niemitz, ed., Gustav Fischer Verlag, Stuttgart, pp. 303–318.Google Scholar
  35. Cave, A. J. E., 1973, The primate nasal fossa, Biol. J. Linn. Soc. 5: 377–387.Google Scholar
  36. Cavonius, C. R., and Robbins, D. O., 1973, Relationship between luminance and visual acuity in the rhesus monkey, J. Physiol. (Lond.) 232: 239–246.Google Scholar
  37. Cooper, G. F., and Robson, J. G., 1969a, The yellow colour of the lens of the grey squirrel (Sciurus carolinensis leucotis), J. Physiol. 203: 403–410.PubMedGoogle Scholar
  38. Cooper, G. F., and Robson, J. G., 1969b, The yellow colour of the lens of man and other primates, J. Physiol. 203: 411–417.PubMedGoogle Scholar
  39. Cowan, W. M., and Powell, T. P. S., 1963, Centrifugal fibers in the avian visual system, Proc. Roy. Soc. Lond. B 158: 232–252.CrossRefGoogle Scholar
  40. Cowey, A., and Ellis, C. M., 1967, Visual acuity of rhesus and squirrel monkeys, J. Comp. Physiol. Psychol. 64: 80–84.PubMedCrossRefGoogle Scholar
  41. Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E., 1990, Human photoreceptor topography, J.Comp. Neurol. 292: 497–523.PubMedCrossRefGoogle Scholar
  42. Dartnall, H. J. A., Arden, G. B., Ikeda, H., Luck, C. P., Rosenberg, M. E., Pedler, C. M. H., and Tansley, K., 1965, Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: An interpretative study, Vision Res. 5: 399–424.PubMedCrossRefGoogle Scholar
  43. De Valois, R. L., Morgan, H., and Snodderly, D. M., 1974, Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers, Vision Res. 14: 75–81.PubMedCrossRefGoogle Scholar
  44. De Bruyn, E. J., Wise, V. L., and Casagrande, V. A., 1980, The size and topographic arrangement of retinal ganglion cells in the galago, Vision Res. 20: 315–327.CrossRefGoogle Scholar
  45. Detwiler, S. R., 1943, Vertebrate Photoreceptors, The MacMillan Company, New York.CrossRefGoogle Scholar
  46. Disotell, T. R., 1996, The phylogeny of Old World monkeys, Evol. Anthropol. 5: 18–24.CrossRefGoogle Scholar
  47. Disotell, T. R., 2000, Molecular Systematics of the Cercopithecidae, in: Old World Monkeys, P. F. Whitehead, and C. J. Jolly, eds., Cambridge University Press, Cambridge, pp. 29–56.CrossRefGoogle Scholar
  48. Dkhissi-Benyahya, O., Szél, A., Degrip, W. J., and Cooper, H. M., 2001, Short and mid-wavelength cone distribution in a nocturnal strepsirrhine primate (Microcebus murinus), J. Comp. Neurol. 438: 490–504.PubMedCrossRefGoogle Scholar
  49. Douglas, R. H., and Marshall, N. J., 1999, A Review of Vertebrate and Invertebrate Ocular Filters, in: Adaptive Mechanisms in the Ecology of Vision, S. N. Archer, M. B. A. Djamagoz, E. R. Loew, J. C. Partridge, and S. Vallerga, eds., Kluwer Academic Publishers, UK, pp. 95–162.CrossRefGoogle Scholar
  50. Dral, A. D. G., 1983, The retinal ganglion cells of Delphinus delphis and their distribution, Aquat. Mam. 10: 57–68.Google Scholar
  51. Drenhaus, U., von Gunten, A., and Rager, G., 1997, Classes of axons and their distribution in the optic nerve of the tree shrew (Tupaia belangen), Anat. Rec. 249: 103–116.PubMedCrossRefGoogle Scholar
  52. Dunlop, S. A., Ross, W. M., and Beazley, L. D., 1994, The retinal ganglion cell layer and optic nerve in a marsupial, the honey possum (Tarsipes rostratus), Brain Behav. Evol. 44: 307–323.PubMedCrossRefGoogle Scholar
  53. Dvorak, D., Mark, R., and Reymond, L., 1983, Factors underlying falcon grating acuity, Nature 303: 729–730.PubMedCrossRefGoogle Scholar
  54. Emerson, V. F., 1980, Grating acuity of the golden hamster, Exp. Brain Res. 38: 43–52.PubMedCrossRefGoogle Scholar
  55. Endler, J. A., 1993, The color of light in forests and its implications, Ecol. Monogr. 63: 1–27.CrossRefGoogle Scholar
  56. Ferraz de Oliveira, L., and Ripps, H., 1968, The “area centralis” of the owl monkey, Vision Res. 8: 223–228.CrossRefGoogle Scholar
  57. Fischer, Q. S., and Kirby, M. A., 1991, Number and distribution of retinal ganglion cells in anubis baboons (Papio anubis), Brain Behav. Evol. 37: 189–203.PubMedCrossRefGoogle Scholar
  58. Fite, K. V., and Rosenfield-Wessels, S., 1975, A comparative study of deep avian foveas, Brain Behav. Evol. 12: 97–115.PubMedCrossRefGoogle Scholar
  59. Franco, E. C. S., Finlay, B. L., Silveira, L. C. L., Yamada, E. S., and Crowley, J. C., 2000, Conservation of absolute foveal area in New World monkeys, Brain Behav. Evol. 56: 276–286.PubMedCrossRefGoogle Scholar
  60. Franzen, J. L., 1994, The Messel Primates and Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 99–122.Google Scholar
  61. Freeman, B., and Tancred, E., 1978, The number and distribution of ganglion cells in the retina of the brush-tailed possum, Trichosurus vulpecula, J. Comp. Neurol. 177: 557–568.CrossRefGoogle Scholar
  62. Freeman, B., and Watson, C. R. R., 1978, The optic nerve of the brush-tailed possum, Trichosurus vulpecula: Fibre diameter spectrum and conduction latency groups, J. Comp. Neurol. 179: 739–752.PubMedCrossRefGoogle Scholar
  63. Fukuda, Y, Sugimoto, T., and Shirokawa, T., 1982, Strain differences in quantitative analysis of the rat optic nerve, Exp. Neurol. 75: 525–532.PubMedCrossRefGoogle Scholar
  64. Ghosh, K. K., Goodchild, A. K., Sefton, A. E., and Martin, P. R., 1996, Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus, J. Comp. Neurol. 366: 76–92.PubMedCrossRefGoogle Scholar
  65. Gingerich, P. D., 1980, Eocene Adapidae, Paleobiogeography, and the Origin of South American Platyrrhini, in: Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon, and A. B. Chiarelli, eds., Plenum Press, New York, pp. 123–138.CrossRefGoogle Scholar
  66. Goodchild, A. K, Ghosh, K K, and Martin, P. R., 1996, Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus, J. Comp. Neurol. 366: 55–75.PubMedCrossRefGoogle Scholar
  67. Gorgels, T. G. M. F., and van Norren, D., 1992, Spectral transmittance of the rat lens, Vision Res. 32: 1509–1512.PubMedCrossRefGoogle Scholar
  68. Govardovskii, V. L, Röhlich, P., Szél, A., and Khokhlova, T. V., 1992, Cones in the retina of the Mongolian gerbil, Meriones unguiculatur. An immunocytochemical and electrophysiological study, Vision Res. 32: 19–27.PubMedCrossRefGoogle Scholar
  69. Harman, A. M., Nelson, J. E., Crewther, S. G., and Crewther, D. P., 1986, Visual acuity of the northern native cat (Dasyurus hallucatus)—behavioural and anatomical estimates, Behav. Brain Res. 22: 211–216.PubMedCrossRefGoogle Scholar
  70. Harman, A., Dann, J., Ahmat, A., Macuda, T., Johnston, K., Timney, B., 2001, The retinal ganglion cell layer and visual acuity of the camel, Brain Behav. Evol. 58: 15–27.PubMedCrossRefGoogle Scholar
  71. Heesy, C. P., and Ross, C. F., 2001, Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics and cladistics, J. Hum. Evol. 40: 111–149.PubMedCrossRefGoogle Scholar
  72. Hemmi, J. M., and Grünert, U., 1999, Distribution of photoreceptor subtypes in the retina of a marsupial, the tammar wallaby (Macropus eugenii), Vis. Neurosci. 16: 291–302.PubMedCrossRefGoogle Scholar
  73. Hendrickson, A., and Kupfer, C., 1976, The histogenesis of the fovea in the macaque monkey, Invest. Ophthalmol. 15: 746–756.Google Scholar
  74. Hendrickson, A., Djajadi, H. R, Nakamura, L., Possin, D. E., and Sajuthi, D., 2000, Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography, J. Comp. Neurol. 424: 718–730.PubMedCrossRefGoogle Scholar
  75. Herbin, M., Rio, J.-P., Repérant, J., Cooper, H. M., Nevo, E., and Lemire, M., 1995, Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax) , Vis. Neurosci. 12: 253–261.PubMedCrossRefGoogle Scholar
  76. Herbin, M., Boire, D., and Ptito, M., 1997, Size and distribution of retinal ganglion cells in the St. Kitts green monkey (Cercopithecus aethiops sabeus), J. Comp. Neurol. 383: 459–472.PubMedCrossRefGoogle Scholar
  77. Herman, L. M., Peacock, M. F., Yunker, M. P., and Madsen, C. J., 1975, Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity, Science 189: 650–652.PubMedCrossRefGoogle Scholar
  78. Hirsch, J., 1983, Factors underlying falcon grating acuity—reply, Nature 303: 730.CrossRefGoogle Scholar
  79. Hirsch, J., and Hylton, R, 1984, Quality of the primate photoreceptor lattice and limits of spatial vision, Vision Res. 24: 347–355.PubMedCrossRefGoogle Scholar
  80. Hirsch, J., and Curcio, C. A., 1989, The spatial resolution capacity of human foveal retina, Vision Res. 29: 1095–1101.PubMedCrossRefGoogle Scholar
  81. Hodos, W., Miller, R. F., and Fite, K. V., 1991, Age-dependent changes in visual acuity and retinal morphology in pigeons, Vision Res. 31: 669–677.PubMedCrossRefGoogle Scholar
  82. Hokoç, J. N., and Oswaldo-Cruz, E., 1978, Quantitative analysis of the opossum’s optic nerve: An electron microscopic study, J. Comp. Neurol. 178: 773–782.PubMedCrossRefGoogle Scholar
  83. Hubel, D. H., and Wiesel, T. N., 1960, Receptive fields of optic nerve fibres in the spider monkey, J. Physiol. 154: 572–580.PubMedGoogle Scholar
  84. Hughes, A., 1975, A qualitative analysis of the cat retinal ganglion cell topography, J. Comp. Neurol. 163: 107–128.PubMedCrossRefGoogle Scholar
  85. Hughes, A., 1977, The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organization, in: Handbook of Sensory Physiology: The Visual System in Vertebrates, F. Criscitelli, ed., Springer-Verlag, New York, pp. 613–756.CrossRefGoogle Scholar
  86. Inzunza, O., Bravo, H., Smith, R. L., and Angel, M., 1991, Topography and morphology of retinal ganglion cells in Falconiformes: A study of predatory and carrioneating birds, Anat. Rec. 229: 271–277.PubMedCrossRefGoogle Scholar
  87. Jacobs, G. H., 1977, Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity, Vision Res. 17: 821–825.PubMedCrossRefGoogle Scholar
  88. Jacobs, G. H., 1992, Ultraviolet vision in vertebrates, Amer. Zool. 32: 544–554.Google Scholar
  89. Jacobs, G. H., and Deegan, J. F. II, 1994, Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus):Characteristics and mechanisms, Vision Res. 34: 1433–1441.PubMedCrossRefGoogle Scholar
  90. Jacobs, G. H., Blakeslee, B., McCourt, M. E., and Tootell, R. B. H., 1980, Visual sensitivity of ground squirrels to spatial and temporal luminance variations, J.Comp. Physiol. 136: 291–299.CrossRefGoogle Scholar
  91. Jacobs, G. H., Birch, D. G., and Blakeslee, B., 1982, Visual acuity and spatial contrast sensitivity in tree squirrels, Behav. Process. 7: 367–375.CrossRefGoogle Scholar
  92. Jacobson, S. G., Franklin, K. B. J., and McDonald, W. I., 1976, Visual acuity in the cat, Vision Res. 16: 1141–1143.PubMedCrossRefGoogle Scholar
  93. Johnson, G. L., 1901, Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination, Phil. Trans. Roy. Soc. B 194: 1–82.CrossRefGoogle Scholar
  94. Jonas, J. B., Schmidt, A. M., MüUer-Bergh, J. A., Schlötzer-Schrehardt, U. M., and Naumann, G. O. H., 1992, Human optic nerve fiber count and optic disc size, Invest. Ophthalmol. Vis. Sci. 33: 2012–2018.PubMedGoogle Scholar
  95. Jones, A. E., 1965, The retinal structure of (Aotes trivirgatus) the owl monkey, J.Comp. Neurol. 125: 19–28.PubMedCrossRefGoogle Scholar
  96. Juliusson, B., Bergström, A., Röhlich, P., Ehinger, B., van Veen, T., and Szél, A., 1994, Complimentary cone fields of the rabbit retina, Invest. Ophthalmol. Vis. Sci. 35: 811–818.PubMedGoogle Scholar
  97. Kappelman, J., 1992, The age of the Fayum primates as determined by paleomagnetic reversal stratigraphy, J. Hum. Evol. 22: 495–503.CrossRefGoogle Scholar
  98. Kay, R. F., and Cartmill, M., 1977, Cranial morphology and adaptation of Palaechthon nacimienti and other paraomomyidae (Plesiadapoidea ? Primates), with a description of a new genus and species, J.Hum. Evol. 6: 19–35.CrossRefGoogle Scholar
  99. Kay, R. F., and Simons, E. L., 1983, Dental formulae and dental eruption patterns in Parapithecidae (Primates, Anthropoidea), Am.J. Phys. Anthropol. 62: 363–375.PubMedCrossRefGoogle Scholar
  100. Kay, R F., and Kirk, E. C., 2000, Osteological evidence for the evolution of activity pattern and visual acuity in primates, Am. J. Phys. Anthropol. 113: 235–262.PubMedCrossRefGoogle Scholar
  101. Kay, R. F., and Williams, B. A., 1994, Dental Evidence for Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp.361–445.Google Scholar
  102. Kirby, M. A., Clift-Forsburg, L., Wilson, P. D., and Rapisardi, S. C., 1982, Quantitative analysis of the optic nerve of the North American opossum (Didelphis virginiana): An electron microscopic study, J Comp. Neurol. 211: 318–327.PubMedCrossRefGoogle Scholar
  103. Kolb, H., and Wang, H. W., 1985, The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossum (Didelphisvirginiana), Vision Res. 25: 1207–1221.PubMedCrossRefGoogle Scholar
  104. Kolmer, W., 1930, Zur Kenntnis des Auges der Primaten, Z.Anat. Entwiklungsgesch. 93: 679–722.CrossRefGoogle Scholar
  105. Kryger, Z., Galli-Resta, L., Jacobs, G. H., and Reese, B. E., 1998, The topography of rod and cone photoreceptors in the retina of the ground squirrel, Visual Neurosci. 15: 685–691.CrossRefGoogle Scholar
  106. Lanèque, L., 1993, Variation of orbital features in adapine skulls, J.Hum. Evol. 25: 287–317.CrossRefGoogle Scholar
  107. Langston, A., Casagrande, V. A., and Fox, R, 1986, Spatial resolution of the galago, Vision Res. 26: 791–796.PubMedCrossRefGoogle Scholar
  108. Le Gros Clark, W. E., 1959, The Antecedents of Man, Edinburgh University Press, Edinburgh.Google Scholar
  109. Leventhal, A. G., and Schall, J. D., 1989, Extrinsic Determinants of Retinal Ganglion Cell Development in Cats and Monkeys, in: Development of the Vertebrate Retina, B. Finlay, and D. Sengelaub, eds., Plenum Press, New York, pp. 173–195.CrossRefGoogle Scholar
  110. Leventhal, A. G., Auk, S. J., Vitek, D. J., and Shou, T., 1989, Extrinsic determinants of retinal ganglion cell development in primates, J. Comp. Neurol. 286: 170–189.PubMedCrossRefGoogle Scholar
  111. Lima, S. M. A., Silveira, L. C. L., and Perry, V. H., 1996, Distribution of M retinal ganglion cells in diurnal and nocturnal New World monkeys, J.Comp. Neurol. 368: 538–552.PubMedCrossRefGoogle Scholar
  112. Linberg, K. A., Shaaw, C. L., Rex, T. S., Lewis, G. P., and Fisher, S. K., 1998, The distribution of S and L cones in cat retina before and after experimental detachment, Invest. Ophthalmol. Vis. Sci. 39: S1059.Google Scholar
  113. Long, K. O., and Fisher, S. K., 1983, The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi, J. Comp. Neurol. 221: 329–340.CrossRefGoogle Scholar
  114. Lukâts, Á, Dkhissi-Benyahya, O., Szepessy, Z., Röhlich, P., Vígh, B., Bennett, N. C. et al., 2002, Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse, Invest. Ophthalmol. Vis. Sci. 43: 2468–2473.PubMedGoogle Scholar
  115. Lythgoe, J. N., 1979, The Ecology of Vision, Clarendon Press, Oxford, UK.Google Scholar
  116. MacKinnon, J., and MacKinnon, K., 1980, The behavior of wild spectral tarsiers, Int. J. Primatol. 1: 361–379.CrossRefGoogle Scholar
  117. MacPhee, R. D. E., and Cartmill, M., 1986, Basicranial Structures and Primate Systematics, in: Comparative Primate Biology, vol. 1, Systematics, Evolution and Anatomy, D. Swindler, and T. Erwin, eds., Alan R. Liss, New York, pp. 219–275.Google Scholar
  118. Makaretz, M., and Levine, R. L., 1980, A light microscopic study of the bifoveate retina in the lizard Anolis carolinensis: General observations and convergence ratios, Vision Res. 20: 679–686.PubMedCrossRefGoogle Scholar
  119. Marks, J. M., 1980, Retinal Ganglion Cell Topography in Bats, Doctoral dissertation, Indiana University, Bloomington, IN.Google Scholar
  120. Martin, R. D., 1973, Comparative anatomy and primate systematics, Symp. Zool. Soc. Lond. 33: 301–337.Google Scholar
  121. Martin, R. D., 1990, Primate Origins and Evolution: A Phylogenetic Reconstruction, Chapman and Hall, London.Google Scholar
  122. Martin, P. R, and Grünert, U., 1999, Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys, J.Comp. Neurol. 406: 1–14.PubMedCrossRefGoogle Scholar
  123. Mass, A.M., 1992, Retinal Topography in the Walrus (Odobenus rosmarus divergence) and fur seal (Callorhinus ursinus), in: Marine Mammal Sensory Systems, J. Thomas, R. A. Kastelein, and A. Y. Supin, eds., Plenum Press, New York, pp. 119–135.CrossRefGoogle Scholar
  124. Mass, A. M., and Supin, A. Y, 1986, Topographic distribution of sizes and density of ganglion cells in the retina of a porpoise, Phocoena phocoena, Aquat. Mam. 12: 95–102.Google Scholar
  125. Mass, A. M., and Supin, A. Y., 1989, Distribution of ganglion cells in the retina of an Amazon river dolphin Inia geoffrensis, Aquat. Mam. 15: 49–56.Google Scholar
  126. Mass, A. M., and Supin, A. Y., 1992, Peak density, size and distribution of ganglion cells in the retina of the fur seal, Callorhinus ursinus, Brain Behav. Evol. 39: 69–76.CrossRefGoogle Scholar
  127. Mass, A. M., and Supin, A. Y., 1995, Ganglion cell topography of the retina in the bottlenosed dolphin, Tursiops truncatus, Brain Behav. Evol. 45: 257–265.CrossRefGoogle Scholar
  128. Mass, A. M., and Supin, A. Y., 1997, Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the grey whale Eschrichtius gibbosus, Aquat. Mam. 23:17–28.Google Scholar
  129. Mass, A. M., and Supin, A. Y., 1999, Retinal topography and visual acuity in the riverine tucuxi (Sotalia fluviatilis), Marine Mamm. Sci. 15: 351–365.CrossRefGoogle Scholar
  130. Mass, A. M., and Supin, A. Y., 2000, Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris, Brain Behav. Evol. 55: 111–119.CrossRefGoogle Scholar
  131. Mcllwain, J. T., 1996, An Introduction to the Biology of Vision, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  132. Moran, G., Timney, B., Sorensen, L., and Desrochers, B., 1983, Binocular depth perception in the meerkat (Suricata suricatta), Vision Res. 23: 965–969.PubMedCrossRefGoogle Scholar
  133. Morrison, J. C., Cork, L. C., Dunkelberger, G. R., Brown, A., and Quigley, H. A., 1990, Aging changes of the rhesus monkey optic nerve, Invest. Ophthalmol. Vis. Sci. 31: 1623–1627.PubMedGoogle Scholar
  134. Müller, B., and Peichl, L., 1989, Topography of rods and cones in the tree shrew retina, J Comp. Neurol. 282: 581–594.PubMedCrossRefGoogle Scholar
  135. Murayama, T., Fujise, Y., Aoki, I., and Ishii, T., 1992, Histological Characteristics and Distribution of Ganglion Cells in the Retinae of the Dall’s Porpoise and Minke Whale, in: Marine Mammal Sensory Systems, J. Thomas, R. A. Kastelein, and A. Y. Supin, eds., Plenum Press, New York, pp. 119–135.Google Scholar
  136. Murayama, T., Somiya, H., Aoki, I., and Ishii, T., 1995, Retinal ganglion cell size and distribution predict visual capabilities of Dall’s porpoise, Marine Mamm. Sci. 11: 136–149.CrossRefGoogle Scholar
  137. Murayama, T., and Somiya, H., 1998, Distribution of ganglion cells and object localizing ability in the retina of three cetaceans, Fish. Sci. 64: 27–30.Google Scholar
  138. Murray, K.G., Jones, A. E., and Murray, A., 1973, Fine structure of photoreceptors in the owl monkey, Anat. Rec. 175: 673–696.PubMedCrossRefGoogle Scholar
  139. Napier, J. R, and Napier, P. H., 1967, A Handbook of Living Primates, Academic Press, London.Google Scholar
  140. Neumann, F., and Schmidt, H. D., 1959, Optische Differenzierungsleistungen von Musteliden, Z. Vergl. Physiol. 42: 199–205.Google Scholar
  141. Neuringer, M., Kosobud, A., and Cochrane, G., 1981, Visual acuity of Lemur catta, a diurnal prosimian, Invest. Ophthal. Vis. Sci. 20(Suppl. 3): 49.Google Scholar
  142. Neuweiler, G., 1962, Bau und Leistung des Flughundauges (Pteropus giganteus Gig. Brunn.), Z. Vergl. Physiol. 46: 13–56.CrossRefGoogle Scholar
  143. Nicol, J. A. C., 1981, Tapeta Lucida of Vertebrates, in: Vertebrate Photoreceptor Optics, J. M. Enoch, and F. L. Tobey, eds., Springer-Verlag, Berlin, pp. 401–431.Google Scholar
  144. Niemitz, C., 1984, Biology of Tarsiers. Gustav Fischer Verlag, Stuttgart.Google Scholar
  145. Nowak, R M., 1991, Walker’s Mammals of the World, 5th edition, The Johns Hopkins University Press, Baltimore.Google Scholar
  146. Nussbaum, J. J., Pruett, R C., and Delori, F. C., 1981, Macular yellow pigment: The first 200 years, Retina 1: 296–310.PubMedCrossRefGoogle Scholar
  147. Ogden, T. E., 1975, The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones, J.Comp. Neurol. 163: 193–202.PubMedCrossRefGoogle Scholar
  148. Ogden, T. E., 1983, Nerve fiber layer of the owl monkey retina: Retinotopic organization, Invest. Ophthalmol. Vis. Sci. 24: 265–269.PubMedGoogle Scholar
  149. Ogden, T. E., 1994, Ophthalmologic Research in the Owl Monkey, in: Aotus: The Owl Monkey, J. F. Baer, R. E. Weiler, and I. Kakoma, eds., Academic Press, New York, pp. 263–286.CrossRefGoogle Scholar
  150. Ordy, J. M., and Samorajski, T., 1968, Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates, Vision Res. 8:1205–1225.PubMedCrossRefGoogle Scholar
  151. Packer, O., Hendrickson, A. E., and Curcio, C. A., 1989, Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina), J. Comp. Neurol. 288: 165–183.PubMedCrossRefGoogle Scholar
  152. Pariente, G. F., 1976, Les differents aspects de la limite du tapetum lucidum chez les prosimiens, Vision Res. 16: 387–391.PubMedCrossRefGoogle Scholar
  153. Peichl, L., and Moutairou, K., 1998, Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia), Eur. J. Neurosci. 10: 2586–2594.PubMedCrossRefGoogle Scholar
  154. Perry, V. H., and Cowey, A., 1985, The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors, Vision Res. 25: 1795–1810.PubMedCrossRefGoogle Scholar
  155. Petry, H. M., Fox, R., and Casagrande, V. A., 1984, Spatial contrast sensitivity of the tree shrew, Vision Res. 24: 1037–1042.PubMedCrossRefGoogle Scholar
  156. Pettigrew, J. D., Dreher, B., Hopkins, C. S., McCall, M. J., and Brown, M., 1988, Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity, Brain Behav. Evol. 32: 39–56.PubMedCrossRefGoogle Scholar
  157. Pirie, A., 1959, Crystals of riboflavin making up the tapetum lucidum in the eye of a lemur, Nature 183: 985–986.PubMedCrossRefGoogle Scholar
  158. Pirie, A., 1966, The Chemistry and Structure of the Tapetum Lucidum in Animals, in: Aspects of Comparative Ophthalmology, O. Graham-Jones, ed., Pergamon, London, pp. 57–68.Google Scholar
  159. Polyak, S., 1957, The Vertebrate Visual System, The University of Chicago Press, Chicago.Google Scholar
  160. Prince, J. H., 1956, Comparative Anatomy of the Eye, Thomas, Springfield.Google Scholar
  161. Provis, J. M., Diaz, C. M., and Dreher, B., 1998, Ontogeny of the primate fovea: A central issue in retinal development, Prog. Neurobiol. 54: 549–581.PubMedCrossRefGoogle Scholar
  162. Prusky, G. T., West, P. W. R., and Douglas, R. M., 2000, Behavioral assessment of visual acuity in mice and rats, Vision Res. 40: 2201–2209.PubMedCrossRefGoogle Scholar
  163. Quigley, H. A., Coleman, A. L., and Dorman-Pease, M. E., 1991, Larger optic nerve heads have more nerve fibers in normal monkey eyes, Arch. Ophthalmol. 109: 1441–1443.PubMedCrossRefGoogle Scholar
  164. Rasmussen, D. T., 1990, The phylogenetic position of Mahgarita stevensi: Protoanthropoid or lemuroid? Int. J. Primatol. 11: 439–469.CrossRefGoogle Scholar
  165. Reymond, L., 1985, Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation, Vision Res. 25: 1477–1491.PubMedCrossRefGoogle Scholar
  166. Reymond, L., 1987, Spatial visual acuity of the falcon, Falco berigora: A behavioural, optical and anatomical investigation, Vision Res. 27: 1859–1874.PubMedCrossRefGoogle Scholar
  167. Ritland, S., 1982, The Allometry of the Vertebrate Eye, Doctoral dissertation, University of Chicago.Google Scholar
  168. Rodieck, R. W., 1973, The Vertebrate Retina, W. H. Freeman and Company, San Francisco.Google Scholar
  169. Rodieck, R. W., 1988, The Primate Retina, in: Comparative Primate Biology, H. D. Steklis, and J. Erwin, eds., Alan R Liss, Inc, New York, pp. 203–278.Google Scholar
  170. Rohen, J. W., and Castenholz, A., 1967, Über die Zentralisation der Retina bei Primaten, Folia Primatol. 5: 92–147.PubMedCrossRefGoogle Scholar
  171. Rosenberger, A. L., 1985, In favor of the necrolemur-tarsier hypothesis, Folia Primatol. 45: 179–194.CrossRefGoogle Scholar
  172. Ross, C. F., 1993, The Functions of the Postorbital Septum and Anthropoid Origins, Doctoral dissertation, Duke University.Google Scholar
  173. Ross, C. F., 1995, Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea, J. Hum. Evol. 29: 201–227.CrossRefGoogle Scholar
  174. Ross, C., 1996, Adaptive explanation for the origins of the Anthropoidea (Primates), Am. J. Primatol. 40: 205–230.CrossRefGoogle Scholar
  175. Ross, C. F., 2000, Into the light: The origin of Anthropoidea, Annu. Rev. Anthropol. 29: 147–194.CrossRefGoogle Scholar
  176. Ross, C. F., 2003, The Tarsier Fovea: Functionless Vestige or Nocturnal Adaptation?, in: Anthropoid Origins: New Visions, C. Ross, and R. F. Kay, eds., Kluwer/Plenum Press, New York, pp. 477–537 (This Volume).Google Scholar
  177. Ross, C. F., and Hylander, W. L., 2000, Electromyography of the anterior temporalis and masseter muscles of owl monkeys (Aotus trivirgatus) and the function of the postorbital septum, Am. J. Phys. Anthropol. 112: 455–468.PubMedCrossRefGoogle Scholar
  178. Ross, C., Williams, B., and Kay, R. F., 1998, Phylogenetic analysis of anthropoid relationships, J.Hum. Evol. 35: 221–306.PubMedCrossRefGoogle Scholar
  179. Rowe, N., 1996, The Pictorial Guide to the Living Primates, Pogonias Press, East Hampton, New York.Google Scholar
  180. Sanchez, R. M., Dunkelberger, G. R., and Quigley, H. A., 1986, The number and diameter distribution of axons in the monkey optic nerve, Invest. Ophthalmol. Vis. Sci. 27: 1342–1350.PubMedGoogle Scholar
  181. Schein, S. J., 1988, Anatomy of macaque fovea and spatial densities of neurons in foveal representation, J. Comp. Neurol. 269: 479–505.PubMedCrossRefGoogle Scholar
  182. Schmid, K. L., Schmid, L. M., Wildsoet, C. F., and Pettigrew, J. D., 1992, Retinal topography in the koala (Phascolarctos cinereus), Brain Behav. Evol. 39: 8–16.PubMedCrossRefGoogle Scholar
  183. Schultz, A. H., 1940, The size of the orbit and of the eye in primates, Am. J. Phys. Anthropol. 26: 389–408.CrossRefGoogle Scholar
  184. Schusterman, R. J., and Balliet, R. F., 1970a, Visual acuity of the harbour seal and the steller sea lion under water, Nature 226: 563–564.PubMedCrossRefGoogle Scholar
  185. Schusterman, R. J., and Balliet, R. F., 1970b, Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions, Science 169: 498–501.PubMedCrossRefGoogle Scholar
  186. Seymoure, P., and Juraska, J. M., 1997, Vernier and grating acuity in adult hooded rats: The influence of sex, Behav. Neurosci. 111: 792–800.PubMedCrossRefGoogle Scholar
  187. Silveira, L. C. L., Picanço-Diniz, C. W., Sampaio, L. F. S., and Oswaldo-Cruz, E., 1989, Retinal ganglion cell distribution in the cebus monkey: A comparison with the cortical magnification factors, Vision Res. 29: 1471–1483.PubMedCrossRefGoogle Scholar
  188. Simons, E. L., 1995, Skulls and anterior teeth of Catopithecus (Primates: Anthropoidea) from the Eocene and anthropoid origins, Science 268: 1885–1888.PubMedCrossRefGoogle Scholar
  189. Simons, E. L., 1997, Preliminary description of the cranium of Proteopithecus sylviae, an Egyptian late Eocene anthropoidean primate, Proc. Nat. Acad. Sci. USA 94: 14970–14975.PubMedCrossRefGoogle Scholar
  190. Simons, E.L., 2001, The cranium of Parapithecus grangeri, an Egyptian Oligocene anthropoidean primate, Proc. Nat. Acad. Sci. USA 98: 7892–7897.PubMedCrossRefGoogle Scholar
  191. Simons, E. L., and Rasmussen, D. T., 1991, The generic classification of Fayum Anthropoidea, Int. J. Primatol. 12: 163–177.CrossRefGoogle Scholar
  192. Simons, E. L., and Rasmussen, D. T., 1994, A whole new world of ancestors: Eocene anthropoideans from Africa, Evol. Anthropol. 3: 128–139.CrossRefGoogle Scholar
  193. Simons, E. L., and Rasmussen, D. T., 1996, Skull of Catopithecus browni, and early Tertiary catarrhine, Am. J. Phys. Anthropol. 100: 261–292.PubMedCrossRefGoogle Scholar
  194. Simons, E. L., Seiffert, E. R., Chatrath, P. S., and Attia, Y., 2001, Earliest record of a parapithecid anthropoid from the Jebel Qatrani Formation, northern Egypt, Folia Primatol. 72: 316–331.PubMedCrossRefGoogle Scholar
  195. Sinex, D. G., Burdette, L. J., and Pearlman, A. L., 1979, A psychophysical investigation of spatial vision in the normal and reeler mutant mouse, Vision Res. 19: 853–857.PubMedCrossRefGoogle Scholar
  196. Snodderly, D. M., Brown, P. K., Delori, F. C., and Auran, J. D., 1984a, The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas, Invest. Ophthal. Vis. Sci. 25: 660–673.PubMedGoogle Scholar
  197. Snodderly, D. M., Auran, J. D., and Delori, F. C., 1984b, The macular pigment. II. Spatial distribution in primate retinas, Invest. Ophthal. Vis. Sci. 25: 674–685.PubMedGoogle Scholar
  198. Sokal, R. R., and Rohlf, F. J., 1995, Biometry, 3rd edition, W. H. Freeman and Company, New York.Google Scholar
  199. Spong, P., and White, D., 1971, Visual acuity and discrimination learning in the dolphin (Lagenorhynchus obliquidens), Exp. Neurol. 31: 431–436.PubMedCrossRefGoogle Scholar
  200. Stair, R., and Johnston, R., 1953, Ultraviolet spectral radiant energy reflected from the moon. J. Res. Natl. Bureau Std. 51: 81–84.CrossRefGoogle Scholar
  201. Stark, W. S., 1987, Photopic sensitivities to ultraviolet and visible wavelengths and the effects of the macular pigments in human aphakic observers, Curr. Eye Res. 6: 631–638.PubMedCrossRefGoogle Scholar
  202. Stark, W. S., and Tan, K. E. P. W., 1982, Ultraviolet light: Photosensitivity and other effects on the visual system, Photochem. Photobiol. 36: 371–380.PubMedCrossRefGoogle Scholar
  203. Stark, W. S., Wagner, R. H., and Gillespie, C. M., 1994, Ultraviolet sensitivity of three cone types in the aphakic observer determined by chromatic adaptation, Vision Res. 34: 1457–1459.PubMedCrossRefGoogle Scholar
  204. Steinberg, R. H., Reid, M., and Lacy, P., 1973, The distribution of rods and cones in the retina of the cat (Felis domesticus),J. Comp. Neurol. 148: 229–248.PubMedCrossRefGoogle Scholar
  205. Stephan, H., Frahm, H. D., and Baron, G., 1984, Comparison of brain structure volumes in Insectivora and Primates. IV. Non-cortical visual structures, J.Hirnforsch. 25: 385–403.PubMedGoogle Scholar
  206. Stone, J., and Johnston, E., 1981, The topography of the primate retina: A study of the human, bushbaby, and new-and old-world monkeys, J. Comp. Neurol. 196: 205–223.PubMedCrossRefGoogle Scholar
  207. Stone, J., and Halasz, P., 1989, Topography of the retina in the elephant Loxodonta africana, Brain Behav. Evol. 34: 84–95.PubMedCrossRefGoogle Scholar
  208. Suthers, R. A., 1966, Optomotor responses by echolocating bats, Science 152: 1102–1104.PubMedCrossRefGoogle Scholar
  209. Szél, Á., Röhlich, P., Caffé, A. R., Juliusson, B., Aguirre, G., and van Veen, T., 1992, Unique topographic separation of two spectral classes of cones in the mouse retina, J. Comp. Neurol. 325: 327–342.PubMedCrossRefGoogle Scholar
  210. Szél, Á., Csorba, G., Caffé, A. R, Szél, Gy., Röhlich, P., and van Veen, T., 1994, Cell Tissue Res. 276: 143–150.PubMedCrossRefGoogle Scholar
  211. Tetreault, N., Hakeem, A., and Allman, J. M., 2003, The Distribution and Size of Retinal Ganglion Cells in Microcebus murinus, Cheirogaleus medius, and Tarsius syrichta: Implications for the Evolution of Sensory Systems in Primates, in: Anthropoid Origins: New Visions, C. Ross, and R F. Kay, eds., Kluwer/Plenum Press, New York, pp. 463–475 (This Volume).Google Scholar
  212. Thomson, L. R., Toyoda, Y., Langner, A., Delori, F. C., Garnett, K. M., Craft, N. et al., 2002, Elevated retinal zeaxanthin in prevention of light-induced photoreceptor cell death in quail, Invest. Ophthal. Vis. Sci. 43: 3538–3549.PubMedGoogle Scholar
  213. Thorington, R. W., Muckenhirn, N. A., and Montgomery, G. G., 1976, Movements of a Wild Night Monkey, Aotus trivirgatus, in: Neotropical Primates—Field Studies and Conservation, R. W. Thorington, and P. G. Heltne, eds., National Academy of Science Press, Washington, D.C.Google Scholar
  214. Tiao, Y. C., and Blakemore, C., 1976, Regional specialization in the golden hamster’s retina, J. Comp. Neurol. 168: 439–458.PubMedCrossRefGoogle Scholar
  215. Timney, B., and Keil, K., 1992, Visual acuity in the horse, Vision Res. 32: 2289–2293.PubMedCrossRefGoogle Scholar
  216. Troilo, D., Howland, H. C., and Judge, S. J., 1993, Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus), Vision Res. 33: 1301–1310.PubMedCrossRefGoogle Scholar
  217. Vakkur, G. J., and Bishop, P. O., 1963, The schematic eye in the cat, Vision Res. 3: 357–381.CrossRefGoogle Scholar
  218. van Heyningen, R., 1971, Fluorescent derivatives of 3-hydroxy-L-kynurenine in the lens of man, the baboon and the grey squirrel, Biochem. J. 123: 30–31p.Google Scholar
  219. van Heyningen, R., 1973, The Glucoside of 3-hydroxykynurenine and Other Fluorescent Compounds in the Human Lens, in: The Human Lens in Relation to Cataract, Ciba Foundation Symposium 19 (new series). Elsevier, Amsterdam, pp. 151–171.Google Scholar
  220. Van Hof, M. W., 1967, Visual acuity in the rabbit, Vision Res. 7: 749–751.PubMedCrossRefGoogle Scholar
  221. Vaney, D. I., 1980, The grating acuity of the wild European rabbit, Vision Res. 20: 87–89.PubMedCrossRefGoogle Scholar
  222. Vaney, D. I., and Hughes, A., 1976, The rabbit optic nerve: Fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count, J. Comp. Neurol. 170: 241–252.PubMedCrossRefGoogle Scholar
  223. Wakakuwa, K., Watanabe, M., Sugimoto, T., Washida, A., and Fukuda, Y., 1987, An electron microscopic analysis of the optic nerve of the eastern chipmunk (Tamias Sibiricns asiaticus): Total fiber count and retinotopic organization, Vision Res. 27: 1891–1901.PubMedCrossRefGoogle Scholar
  224. Walker, A., 1967, Patterns of Extinction among Subfossil Madagascan Lemuroids, in: Pleistocene Extinctions: The Search for a Cause, P. S. Martin, and H. E. Wright, eds., Yale University Press, New Haven, pp. 425–432.Google Scholar
  225. Walls, G. L., 1942, The Vertebrate Eye and its Adaptive Radiation, Hafner Publishing Company, New York.CrossRefGoogle Scholar
  226. Walls, G. L., 1953, The lateral geniculate nucleus and visual histophysiology, Univ. California Publications Physiol. 9: 1–100.Google Scholar
  227. Wässle, H., and Boycott, B. 1991, Functional architecture of the mammalian retina. Physiol. Rev. 71: 447–480.PubMedGoogle Scholar
  228. Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B. B., 1989, Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341: 643–646.PubMedCrossRefGoogle Scholar
  229. Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B. B., 1990, Retinal ganglion cell density and cortical magnification factor in the primate. Vision Res. 30: 1897–1911.PubMedCrossRefGoogle Scholar
  230. Wässle, H., Grünert, U., Martin, P. R, and Boycott, B. B., 1994, Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey. Vision Res. 34: 561–579.PubMedCrossRefGoogle Scholar
  231. Weale, R. A., 1966, Why does the human retina possess a fovea? Nature 212: 255–256.PubMedCrossRefGoogle Scholar
  232. Webb, S. V., and Kaas, J. H., 1976, The sizes and distribution of ganglion cells in the retina of the owl monkey. Vision Res. 16: 1247–1254.PubMedCrossRefGoogle Scholar
  233. Wikler, K. C., and Rakic, P., 1990, Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J. Neurosci. 10: 3390–3401.PubMedGoogle Scholar
  234. Wilder, H. B., Grünert, U., Lee, B. B., and Martin, P. R., 1996, Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus, Vis. Neurosci. 13: 335–352.PubMedCrossRefGoogle Scholar
  235. Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve, J.Comp. Neurol. 246: 32–69.PubMedCrossRefGoogle Scholar
  236. Wolin, L. R., and Massopust, L. C., 1970, Morphology of the Primate Retina, in: The Primate Brain, C. R. Noback, and W. Montagna, Eds., Appleton-Century-Crofts, New York, pp. 1–27.Google Scholar
  237. Woodhouse, J. M., and Barlow, H. B., 1982, Spatial and Temporal Resolution and Analysis, in: The Senses, H. B. Barlow, and J. D. Mollon, eds., Cambridge University Press, Cambridge, pp. 133–164.Google Scholar
  238. Woollard, H. H., 1927, The differentiation of the retina in primates, Proc. ZooL Soc. Lond. 1927: 1–17.Google Scholar
  239. Wooten, B. R., and Hammond, B. R., 2002, Macular pigment: Influences on visual acuity and visibility, Prog. Ret. Eye Res. 21: 225–240.CrossRefGoogle Scholar
  240. Wright, P. C., 1981, The Night Monkeys, Genus Aotus, in: Ecology and Behavior of Neotropical Primates, A. F. Coimbra-Filho, and R. A. Mittermeier, eds., Academia Brasiliera de Ciências, Rio de Janeiro, pp. 211–240.Google Scholar
  241. Yamada, E. S., Marshak, D. W., Silveira, L. C. L., and Casagrande, V. A., 1998, Morphology of P and M retinal ganglion cells of the bush baby, Vision Res. 38: 3345–3352.PubMedCrossRefGoogle Scholar
  242. Yamada, E. S., Silveira, L. C. L., Perry, V. H., and Franco, E. C. S., 2001, M and P retinal ganglion cells of the owl monkey: Morphology, size and photoreceptor convergence, Vision Res. 41: 119–131.PubMedCrossRefGoogle Scholar
  243. Young, H. M., and Pettigrew, J. D., 1991, Cone photoreceptors lacking oil droplets in the retina of the echidna, Tachyglossus aculeatus (Monotremata), Vis. Neurosci. 6: 409–420.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.Department of Biological Anthropology and AnatomyDuke University Medical CenterDurhamUSA

Personalised recommendations