Skip to main content

Angiogenesis in transgenic models of multistep angiogenesis

  • Chapter
Book cover Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

The histopathology and the epidemiology of human cancers, as well as studies of animal models of tumorigenesis, have led to a widely accepted notion that multiple genetic and epigenetic changes have to accumulate for progression to malignancy. Formation of new blood vessels (tumor angiogenesis) has been recognized, in addition to proliferative capabilities and ability to downmodulate cell death (apoptosis), as essential for the progressive growth and expansion of solid tumors. Mice overexpressing activated forms of oncogenes or carrying targeted mutations in tumor suppressor genes have proven extremely useful for linking the function of these genes with specific tumor features such as continuous proliferation, escape from apoptosis, invasion and neo-angiogenesis, The interbreeding of these mice allows for studying the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of multi-stage nature of tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flamme, I., et al., Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol, 1995. 171(2): p. 399–414.

    Article  PubMed  CAS  Google Scholar 

  2. Risau, W. and I. Flamme, Vasculogenesis. Annu Rev Cell Dev Biol, 1995. 11: p. 73–91.

    Article  PubMed  CAS  Google Scholar 

  3. Stone, J., et al., Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci, 1995. 15(7 Pt 1): p. 4738–47.

    PubMed  CAS  Google Scholar 

  4. Breier, G., M. Clauss, and W. Risau, Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn, 1995. 204(3): p. 228–39.

    Article  PubMed  CAS  Google Scholar 

  5. Kremer, C., et al., Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res, 1997. 57(17): p. 3852–9.

    PubMed  CAS  Google Scholar 

  6. Hobson, B. and J. Denekamp, Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer, 1984. 49(4): p. 405–13.

    Article  PubMed  CAS  Google Scholar 

  7. Parangi, S., et al., Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A, 1996. 93(5): p. 2002–7.

    Article  PubMed  CAS  Google Scholar 

  8. Weindel, K., et al., Detection and quantification of vascular endothelial growth factor/vascular permeability factor in brain tumor tissue and cyst fluid: the key to angiogenesis? Neurosurgery, 1994. 35(3): p. 439–48; discussion 439–48.

    Article  PubMed  CAS  Google Scholar 

  9. Shweiki, D., et al., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992. 359(6398): p. 843–5.

    Article  PubMed  CAS  Google Scholar 

  10. Plate, K.H., et al., Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 1992. 359(6398): p. 845–8.

    Article  PubMed  CAS  Google Scholar 

  11. Leung, S.Y., et al., Expression of vascular endothelial growth factor and its receptors in pilocytic astrocytoma. Am J Surg Pathol, 1997. 21(8): p. 941–50.

    Article  PubMed  CAS  Google Scholar 

  12. Pietsch, T., et al., Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol (Berl), 1997. 93(2): p. 109–17.

    Article  CAS  Google Scholar 

  13. Plate, K.H. and W. Risau, Angiogenesis in malignant gliomas. Glia, 1995. 15(3): p. 339–47.

    Article  PubMed  CAS  Google Scholar 

  14. Plate, K.H. and P.C. Warnke, Vascular endothelial growth factor. J Neurooncol, 1997. 35(3): p. 365–72.

    Article  PubMed  CAS  Google Scholar 

  15. Plate, K.H. and H.D. Mennel, Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol, 1995. 47(2–3): p. 2–3.

    Article  PubMed  CAS  Google Scholar 

  16. Takano, S., et al., Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res, 1996. 56(9): p. 2185–90.

    PubMed  CAS  Google Scholar 

  17. Takekawa, Y. and T. Sawada, Vascular endothelial growth factor and neovascularization in astrocytic tumors. Pathol Int, 1998. 48(2): p. 109–14.

    Article  PubMed  CAS  Google Scholar 

  18. Abdulrauf, S.I., et al., Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg, 1998. 88(3): p. 513–20.

    Article  PubMed  CAS  Google Scholar 

  19. Semenza, G.L., Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 2000. 35(2): p. 71–103.

    Article  PubMed  CAS  Google Scholar 

  20. Fukumura, D., et al., Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res, 2001. 61(16): p. 6020–4.

    PubMed  CAS  Google Scholar 

  21. Zagzag, D., et al., Expression of hypoxia-inducible factor lalpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer, 2000. 88(11): p. 2606–18.

    Article  PubMed  CAS  Google Scholar 

  22. Plate, K.H., et al., Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer, 1994. 59(4): p. 520–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hatva, E., et al., Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol, 1995. 146(2): p. 368–78.

    PubMed  CAS  Google Scholar 

  24. Davis, S., et al., Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 1996. 87(7): p. 1161–9.

    Article  PubMed  CAS  Google Scholar 

  25. Maisonpierre, P.C., et al., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997. 277(5322): p. 55–60.

    Article  PubMed  CAS  Google Scholar 

  26. Holash, J., et al., Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 1999. 284(5422): p. 1994–8.

    Article  PubMed  CAS  Google Scholar 

  27. Asahara, T., et al., Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res, 1998. 83(3): p. 233–40.

    Article  PubMed  CAS  Google Scholar 

  28. Koblizek, T.I., et al., Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol, 1998. 8(9): p. 529–32.

    Article  PubMed  CAS  Google Scholar 

  29. Stratmann, A., W. Risau, and K.H. Plate, Cell type-specific expression of angiopoietin1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol, 1998. 153(5): p. 1459–66.

    Article  PubMed  CAS  Google Scholar 

  30. Good, D.J., et al., A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A, 1990. 87(17): p. 6624–8.

    Article  PubMed  CAS  Google Scholar 

  31. O’Reilly, M.S., et al., Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med, 1996. 2(6): p. 689–92.

    Article  PubMed  Google Scholar 

  32. O’Reilly, M.S., et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997. 88(2): p. 277–85.

    Article  PubMed  Google Scholar 

  33. Rodriguez-Manzaneque, J.C., et al., Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12485–90.

    Article  PubMed  CAS  Google Scholar 

  34. Kazuno, M., et al., Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer, 1999. 35(3): p. 502–6.

    Article  PubMed  CAS  Google Scholar 

  35. Filleur, S., et al., In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev, 2001. 15(11): p. 1373–82.

    Article  PubMed  CAS  Google Scholar 

  36. Read, T.A., et al., Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol, 2001. 19(1): p. 29–34.

    Article  PubMed  CAS  Google Scholar 

  37. Joki, T., et al., Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol, 2001. 19(1): p. 35–9.

    Article  PubMed  CAS  Google Scholar 

  38. Hanahan, D., Transgenic mice as probes into complex systems. Science, 1989. 246(4935): p. 1265–75.

    Article  PubMed  CAS  Google Scholar 

  39. Hanahan, D., Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature, 1985. 315(6015): p. 115–22.

    Article  PubMed  CAS  Google Scholar 

  40. Hanahan, D., et al., Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer, 1996. 32A(14): p. 2386–93.

    Article  PubMed  CAS  Google Scholar 

  41. Rovigatti, U., et al., Transgenic mice as research tools in neurocarcinogenesis. J Neurovirol, 1998. 4(2): p. 159–74.

    Article  PubMed  CAS  Google Scholar 

  42. Alpert, S., D. Hanahan, and G. Teitelman, Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell, 1988. 53(2): p. 295–308.

    Article  PubMed  CAS  Google Scholar 

  43. Folkman, J., et al., Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 1989. 339(6219): p. 58–61.

    Article  PubMed  CAS  Google Scholar 

  44. Gannon, G., et al., Overexpression of vascular endothelial growth factor-A 165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res, 2002. 62(2): p. 603–8.

    PubMed  CAS  Google Scholar 

  45. Arbeit, J.M., et al., Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol, 1994. 68(7): p. 4358–68.

    PubMed  CAS  Google Scholar 

  46. Coussens, L.M., D. Hanahan, and J.M. Arbeit, Genetic predisposition and parameters of malignant progression in K14–HPV16 transgenic mice. Am J Pathol, 1996. 149(6): p. K14–HPV16.

    PubMed  CAS  Google Scholar 

  47. Lacey, M., S. Alpert, and D. Hanahan, Bovine papillomavirus genome elicits skin tumours in transgenic mice. Nature, 1986. 322(6080): p. 609–12.

    Article  PubMed  CAS  Google Scholar 

  48. Weissenberger, J., et al., Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene, 1997. 14(17): p. 2005–13.

    Article  PubMed  CAS  Google Scholar 

  49. Xiao, A., et al., Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell, 2002. 1(2): p. 157–68.

    Article  PubMed  CAS  Google Scholar 

  50. Ding, H., et al., Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res, 2001. 61(9): p. 3826–36.

    PubMed  CAS  Google Scholar 

  51. Holland, E.C., et al., A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev, 1998. 12(23): p. 3675–85.

    Article  PubMed  CAS  Google Scholar 

  52. Holland, E.C., et al., Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet, 2000. 25(1): p. 55–7.

    Article  Google Scholar 

  53. Dai, C., et al., PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev, 2001. 15(15): p. 1913–25.

    Article  PubMed  CAS  Google Scholar 

  54. Uhrbom, L., et al., Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res, 2002. 62(19): p. 5551–8.

    PubMed  CAS  Google Scholar 

  55. Wolf, R.M., et al., p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev, 2003. 17(4): p. 476–87.

    Article  PubMed  CAS  Google Scholar 

  56. Holland, E.C., et al., Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol, 2000. 157(3): p. 1031–7.

    Article  PubMed  CAS  Google Scholar 

  57. Reilly, K.M., et al., Nfl;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet, 2000. 26(1): p. 109–13.

    Article  PubMed  CAS  Google Scholar 

  58. Theurillat, J.P., et al., Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am J Pathol, 1999. 154(2): p. 581–90.

    Article  PubMed  CAS  Google Scholar 

  59. Maddalena, A.S., et al., No complementation between TP53 or RB-1 and v-src in astrocytomas of GFAP-v-src transgenic mice. Brain Pathol, 1999. 9(4): p. 627–37.

    Article  PubMed  CAS  Google Scholar 

  60. Rak, J., J. Filmus, and R.S. Kerbel, Reciprocal paracrine interactions between tumour cells and endothelial cells: the ’angiogenesis progression’ hypothesis. Eur J Cancer, 1996. 32A(14): p. 2438–50.

    Article  PubMed  CAS  Google Scholar 

  61. Kinzler, K.W. and B. Vogelstein, Life (and death) in a malignant tumour. Nature, 1996. 379(6560): p. 19–20.

    Article  PubMed  CAS  Google Scholar 

  62. Graeber, T.G., et al., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996. 379(6560): p. 88–91.

    Article  PubMed  CAS  Google Scholar 

  63. Van Meir, E.G., et al., Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet, 1994. 8(2): p. 171–6.

    Article  PubMed  Google Scholar 

  64. Alon, T., et al., Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med, 1995. 1(10): p. 1024–8.

    Article  PubMed  CAS  Google Scholar 

  65. Rak, J., et al., Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J Cell Biol, 1995. 131(6 Pt 1): p. 1587–98.

    Article  PubMed  CAS  Google Scholar 

  66. Grugel, S., et al., Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem, 1995. 270(43): p. 25915–9.

    Article  PubMed  CAS  Google Scholar 

  67. Volpert, O.V., V. Steilmach, and N. Bouck, The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat, 1995. 36(2): p. 119–26.

    Article  PubMed  CAS  Google Scholar 

  68. Christofori, G., P. Naik, and D. Hanahan, Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis. Nat Genet, 1995. 10(2): p. 196–201.

    Article  PubMed  CAS  Google Scholar 

  69. Inoue, M., et al., VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell, 2002. 1(2): p. 193–202.

    Article  PubMed  CAS  Google Scholar 

  70. Borsum, T., Biochemical properties of vascular endothelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol, 1991. 60(5): p. 279–86.

    Article  PubMed  CAS  Google Scholar 

  71. Levy, A.P., et al., Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res, 1995. 76(5): p. 758–66.

    Article  PubMed  CAS  Google Scholar 

  72. Koochekpour, S., A. Merzak, and G.J. Pilkington, Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. Eur J Cancer, 1995. 31A(3): p. 375–80.

    Article  PubMed  CAS  Google Scholar 

  73. Stavri, G.T., et al., Hypoxia and platelet-derived growth factor-BB synergistically upregulate the expression of vascular endothelial growth factor in vascular smooth muscle cells. FEBS Lett, 1995. 358(3): p. 311–5.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, X.J., et al., Development of gene-switch transgenic mice that inducibly express transforming growth factor betal in the epidermis. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8483–8.

    Article  PubMed  CAS  Google Scholar 

  75. Rak, J., et al., Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res, 1995. 55(20): p. 4575–80.

    PubMed  CAS  Google Scholar 

  76. Filmus, J., W. Shi, and T. Spencer, Role of transforming growth factor alpha (TGFalpha) in the transformation of ras-transfected rat intestinal epithelial cells. Oncogene, 1993. 8(4): p. 1017–22.

    PubMed  CAS  Google Scholar 

  77. Chin, L., et al., Essential role for oncogenic Ras in tumour maintenance. Nature, 1999. 400(6743): p. 468–72.

    Article  PubMed  CAS  Google Scholar 

  78. Casanova, M.L., et al., A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res, 2002. 62(12): p. 3402–7.

    PubMed  CAS  Google Scholar 

  79. Watnick, R.S., et al., Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell, 2003. 3(3): p. 219–31.

    Article  PubMed  CAS  Google Scholar 

  80. Bergers, G., et al., Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999. 284(5415): p. 808–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radovanovic, I., D’Angelo, M.G., Aguzzi, A. (2004). Angiogenesis in transgenic models of multistep angiogenesis. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics