Anti-angiogenic Chemotherapy in Central Nervous System Tumors

  • Mark W. Kieran
Part of the Cancer Treatment and Research book series (CTAR, volume 117)


Primary central nervous system tumors are infrequent lesions observed in both pediatric and adult patients that account for a disproportionate amount of cancer related morbidity and mortality. A significant number of advances in neurosurgical land radiation therapy techniques have occurred over the last few decades and yet only small improvements in long-term outcome have resulted. The major reason for this is the ability of these advances to minimize surgical or radiation morbidity on surrounding normal tissue rather than eradicating the microscopic infiltrating disease that remains after up-front standard therapy. As such, a great deal of effort has gone into adjuvant chemotherapy that might complement the standard surgical and radiation approaches. This paper will review the literature on anti-angiogenic therapies in central nervous system (eNS) tumor models and clinical disease, with a focus on anti-angiogenic chemotherapy (also referred to as metronomic or low-dose chemotherapy) and the utilization of this approach in conjunction with standard radiation and surgery. A number of excellent reviews covering related aspects of this topic are also available (1–13).


chemotherapy angiogenesis brain tumor metronomic dosing angiogenesis 


  1. 1.
    Fisher, MJ. and P.C. Adamson, Anti-angiogenic agents for the treatment of brain tumors. Neuroimaging Clin N Am, 2002.12(4): p. 477-99.PubMedCrossRefGoogle Scholar
  2. 2.
    Castro, M.G., et al., Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther, 2003. 98(1): p. 71-108.PubMedCrossRefGoogle Scholar
  3. 3.
    Mischel, P.S. and T.F. Cloughesy, Targeted molecular therapy of GBM. Brain Pathol, 2003. 13(1): p. 52-61.PubMedCrossRefGoogle Scholar
  4. 4.
    Basso, U., et al., Non-cytotoxic therapies for malignant gliomas. 1 Neurooncol, 2002. 58(1): p. 57-69.CrossRefGoogle Scholar
  5. 5.
    Brandes, A.A., U. Basso, and L.M. Pasetto, Changing boundaries in the treatment of malignant gliomas. Expert Rev Anticancer Ther, 2001. 1(3): p. 357-70.PubMedCrossRefGoogle Scholar
  6. 6.
    Kirsch, M., et al., Therapeutic anti-angiogenesis for malignant brain tumors. Onkologie, 2001. 24(5): p. 423-30.PubMedCrossRefGoogle Scholar
  7. 7.
    lennings, M.T. and S. Iyengar, Pharmacotherapy of malignant astrocytomas of children and adults: current strategies and future trends. CNS Drugs, 2001. 15(9): p. 719-43.CrossRefGoogle Scholar
  8. 8.
    Puduvalli, V.K. and R. Sawaya, Antiangiogenesis -- therapeutic strategies and clinical implications for brain tumors. 1 Neurooncol, 2000. 50(1-2): p. 189-200.CrossRefGoogle Scholar
  9. 9.
    Kirsch, M., G. Schackert, and P.M. Black, Anti-angiogenic treatment strategies for malignant brain tumors. 1 Neurooncol, 2000. 50(1-2): p. 149-63.CrossRefGoogle Scholar
  10. 10.
    Reijneveld, J.C., E.E. Voest, and MJ. Taphoorn, Angiogenesis in malignant primary and metastatic brain tumors. 1 Neurol, 2000. 247(8): p. 597-608.CrossRefGoogle Scholar
  11. 11.
    Rubin, J.B. and M.W. Kieran, Innovative therapies for pediatric brain tumors (see comments). Curr Opin Pediatr, 1999. 11(1): p. 39-46.PubMedCrossRefGoogle Scholar
  12. 12.
    Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000 Apr. 6(4): p. 389-95.PubMedCrossRefGoogle Scholar
  13. 13.
    Folkman, J., Tumor Angiogenesis, in Cancer Medicine, 5th Edition, J.F. Holland, et al., Editors. 2000, B.C. Decker Inc: Toronto, Ontario, Canada. p. 132-152.Google Scholar
  14. 14.
    Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6.PubMedCrossRefGoogle Scholar
  15. 15.
    Folkman, J., et al., Isolation of a tumor factor responsible or angiogenesis. J Exp Med, 1971. 133(2): p. 275-88.PubMedCrossRefGoogle Scholar
  16. 16.
    Folkman, J. and M. Hochberg, Self-regulation of growth in three dimensions. 1 Exp Med, 1973. 138(4): p. 745-53.CrossRefGoogle Scholar
  17. 17.
    Cherrington, J.M., L.M. Strawn, and J.K. Shawver, New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res, 2000. 79: p. 1-38.PubMedCrossRefGoogle Scholar
  18. 18.
    Drevs, J., et al., Antiangiogenesis: current clinical data and future perspectives. Onkologie, 2002. 25(6): p. 520-7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kieran, M.W. and A. Billett, Antiangiogenesis therapy. Current and future agents. Hematol Oncol Clin North Am, 2001. 15(5): p. 835-51, viii.CrossRefGoogle Scholar
  20. 20.
    Tennant, T.R., C.W. Rinker-Schaeffer, and W.M. Stadler, Angiogenesis inhibitors. Curr Oncol Rep, 2000. 2(1): p. 11-6.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas, J.P., et al., Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol, 2003.21(2): p. 223-31.PubMedCrossRefGoogle Scholar
  22. 22.
    Logothetis, CJ., et al., Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer. Clin Cancer Res, 2001. 7(5): p. 1198-203.PubMedGoogle Scholar
  23. 23.
    Stopeck, A., et al., Results of a Phase I dose-escalating study of the antiangiogenic agent, SU5416, in patients with advanced malignancies. Clin Cancer Res, 2002. 8(9): p. 2798-805.PubMedGoogle Scholar
  24. 24.
    Erler, J.P., Jr., et al., Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol, 2002. 20(18): p. 3772-84.CrossRefGoogle Scholar
  25. 25.
    Rudek, M.A., et al., Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol, 2001. 19(2): p. 584-92.PubMedGoogle Scholar
  26. 26.
    Teicher, B.A., et al., Antiangiogenic and antitumor effects of a protein kinase Cbeta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res, 2001. 7(3): p. 634-40.PubMedGoogle Scholar
  27. 27.
    Kunkel, P., et al., Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res, 2001. 61(18): p. 6624-8.PubMedGoogle Scholar
  28. 28.
    Takamoto, T., et al., Flk-l specific kinase inhibitor (SU54l6) inhibited the growth of GS-9L glioma in rat brain and prolonged the survival. Kobe J Med Sci, 2001.47(4): p. 181-91.PubMedGoogle Scholar
  29. 29.
    Cheng, S.Y., et al., Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA, 1996.93(16): p. 8502-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Saleh, M., SA Stacker, and A.F. Wilks, Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res, 1996. 56(2): p. 393-40 I.PubMedGoogle Scholar
  31. 3I.
    Sasaki, M., et al., Retrovirus producer cells encoding antisense VEGF prolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci, 1999. 17(5-6): p. 579-91.PubMedCrossRefGoogle Scholar
  32. 32.
    Machein, M.R., et al., Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol Appl Neurobioi, 1999.25(2): p. 104-12.CrossRefGoogle Scholar
  33. 33.
    Rubenstein, J.L., et al., Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia, 2000. 2(4): p. 306-14.PubMedCrossRefGoogle Scholar
  34. 34.
    Hong, Y.K., et al., Efficient inhibition of in vivo human malignant glioma growth and angiogenesis by interferon-beta treatment at early stage of tumor development. Clin Cancer Res, 2000. 6(8): p. 3354-60.PubMedGoogle Scholar
  35. 35.
    Taga, T., et al., alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer, 2002. 98(5): p. 690-7.PubMedCrossRefGoogle Scholar
  36. 36.
    MacDonald, TJ., et al., Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery, 2001. 48(1): p. 151-7.PubMedGoogle Scholar
  37. 37.
    Isobe, N., et al., Experimental studies of the antitumor effect of TNP-470 on malignant brain tumors. Antitumor effect of TNP-470 on a human medulloblastoma xenograft line. Neuropediatrics, 1996.27(3): p. 136-42.PubMedCrossRefGoogle Scholar
  38. 38.
    Taki, T., et al., Anti-proliferative effects of TNP-470 on human malignant glioma in vivo: potent inhibition of tumor angiogenesis. J Neurooncol, 1994. 19(3): p. 251-8.PubMedCrossRefGoogle Scholar
  39. 39.
    Yazaki, T., et al., Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J Neurooncol, 1995. 23(1): p. 23-9.PubMedCrossRefGoogle Scholar
  40. 40.
    Peroulis, I., N. Jonas, and M. Saleh, Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int J Cancer, 2002. 97(6): p. 839-45.PubMedCrossRefGoogle Scholar
  41. 41.
    Sorensen, D.R., et al., Endostatin reduces vascularization, blood flow, and growth in a rat gliosarcoma. Neuro-oncol, 2002. 4(1): p. 1-8.PubMedGoogle Scholar
  42. 42.
    Yamanaka, R., et al., Induction of therapeutic antitumor antiangiogenesis by intratumoral injection of genetically engineered endostatin-producing Semliki Forest virus. Cancer Gene Ther, 2001. 8(10): p. 796-802.PubMedCrossRefGoogle Scholar
  43. 43.
    Joki, T., et al., Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol, 2001. 19(1): p. 35-9.PubMedCrossRefGoogle Scholar
  44. 44.
    Read, T.A., et al., Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol, 2001. 19(1): p. 29-34.PubMedCrossRefGoogle Scholar
  45. 45.
    Sipos, E.P. and H. Brem, Local anti-angiogenic brain tumor therapies. J Neurooncol, 2000.50(1-2): p. 181-8.PubMedCrossRefGoogle Scholar
  46. 46.
    Berger, A.C., et al., The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J Surg Res, 2000 Jun. 91(1): p. 26-31.PubMedCrossRefGoogle Scholar
  47. 47.
    Boehm, T., et al., Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance (see comments). Nature, 1997.390(6658): p. 404-7.PubMedCrossRefGoogle Scholar
  48. 48.
    Bello, L., et al., Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res, 2001. 61(24): p. 8730-6.PubMedGoogle Scholar
  49. 49.
    Reiher, F.K., et al., Inhibition of tumor growth by systemic treatment with thrombospondin-I peptide mimetics. Int J Cancer, 2002. 98(5): p. 682-9.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshida, D., et al., Anti-invasive effect of an anti-matrix metalloproteinase agent in a murine brain slice model using the serial monitoring of green fluorescent proteinlabeled glioma cells. Neurosurgery, 2003. 52(1): p. 187-96; discussion 196-7.PubMedGoogle Scholar
  51. 51.
    Joki, T., et al., Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res, 2000. 60(17): p. 492631.Google Scholar
  52. 52.
    Portnow, J., et al., A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neuro-oncol, 2002.4(1): p. 22-5.PubMedGoogle Scholar
  53. 53.
    Cline, E.I., et al., Prediction of in vivo synergistic activity of antiangiogenic compounds by gene expression profiling. Cancer Res, 2002. 62(24): p. 7143-8.PubMedGoogle Scholar
  54. 54.
    Hellstrom, M., et al., Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999. 126(14): p. 3047-55.PubMedGoogle Scholar
  55. 55.
    Kallmann, B.A., et al., Characteristic gene expression profile of primary human cerebral endothelial cells. Faseb J, 2002. 16(6): p. 589-91.PubMedGoogle Scholar
  56. 56.
    Finn, P.E., R. Bjerkvig, and GJ. Pilkington, The role of growth factors in the malignant and invasive progression of intrinsic brain tumours. Anticancer Res, 1997. 17(6B): p. 4163-72.PubMedGoogle Scholar
  57. 57.
    Hamby, J.M. and H.D. Showalter, Small molecule inhibitors of tumor-promoted angiogenesis, including protein tyrosine kinase inhibitors. Pharmacol Ther, 1999. 82(2-3): p. 169-93.PubMedCrossRefGoogle Scholar
  58. 58.
    Rak, J., et al., What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res, 2002. 62(7): p. 1931-4.PubMedGoogle Scholar
  59. 59.
    Rak, J., et al., Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc, 2000. 5(1): p. 24-33.PubMedCrossRefGoogle Scholar
  60. 60.
    Kilic, T., et al., Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2phenylaminopyrimidine class. Cancer Res, 2000. 60(18): p. 5143-50.PubMedGoogle Scholar
  61. 61.
    Heimberger, A.B., et al., Brain Tumors in Mice Are Susceptible to Blockade of Epidermal Growth Factor Receptor (EGFR) with the Oral, Specific, EGFR-Tyrosine Kinase Inhibitor ZD1839 (Iressa). Clin Cancer Res, 2002. 8(11): p. 3496-502.PubMedGoogle Scholar
  62. 62.
    Bello, L., et al., Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res, 2001. 61(20): p. 7501-6.PubMedGoogle Scholar
  63. 63.
    Hwu, W.J., et al., Treatment of metastatic melanoma in the brain with temozolomide and thalidomide. Lancet Oncol, 2001. 2(10): p. 634-5.PubMedCrossRefGoogle Scholar
  64. 64.
    Arrieta, 0., et al., Antiproliferative effect of thalidomide alone and combined with carmustine against C6 rat glioma. Int J Exp Pathol, 2002. 83(2): p. 99-104.PubMedCrossRefGoogle Scholar
  65. 65.
    Sorensen, D.R., et al., Combination of endostatin and a protein kinase Calpha DNA enzyme improves the survival of rats with malignant glioma. Neoplasia, 2002. 4(6): p. 474-9.PubMedCrossRefGoogle Scholar
  66. 66.
    Mishima, K., et al., A peptide derived from the non-receptor-binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin. Proc Natl Acad Sci USA, 2000. 97(15): p. 8484-9.PubMedCrossRefGoogle Scholar
  67. 67.
    Bello, L., et al., Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors. Clin Cancer Res, 2002. 8(11): p. 3539-48.PubMedGoogle Scholar
  68. 68.
    Hartford, A.C., et al., Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: potential role of host-tumor interaction. Cancer Res, 2000. 60(8): p. 2128-31.PubMedGoogle Scholar
  69. 69.
    Landuyt, W., et al., In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int J Radiat Oncol BioI Phys, 2001. 49(2): p. 443-50.CrossRefGoogle Scholar
  70. 70.
    Hess, C., et al., Effect of VEGF receptor inhibitor PTK787/ZK222584 (correction of ZK222548) combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer, 2001. 85(12): p. 2010-6.PubMedCrossRefGoogle Scholar
  71. 71.
    Herbst, R.S., E.S. Kim, and P.M. Harari, IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert Opin BioI Ther, 2001. 1(4): p. 719-32.CrossRefGoogle Scholar
  72. 72.
    Johansson, M., et al., Effects of radiotherapy and estramustine on the microvasculature in malignant glioma. Br J Cancer, 1999.80(1-2): p. 142-8.PubMedCrossRefGoogle Scholar
  73. 73.
    Li, L., A. Rojiani, and D.W. Siemann, Targeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapy. Int J Radiat Oncol BioI Phys, 1998.42(4): p. 899-903.CrossRefGoogle Scholar
  74. 74.
    Gorski, D.H., et al., Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res, 1999. 59(14): p. 33748.Google Scholar
  75. 75.
    Mauceri, H.J., et al., Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature, 1998.394(6690): p. 287-91.PubMedCrossRefGoogle Scholar
  76. 76.
    Devineni, D., A. Klein Szanto, and J.M. Gallo, Uptake of temozolomide in a rat glioma model in the presence and absence of the angiogenesis inhibitor TNP-470. Cancer Res, 1996.56(9): p. 1983-7.PubMedGoogle Scholar
  77. 77.
    Zhou, R., R. Mazurchuk, and R.M. Straubinger, Antivasculature effects of doxorubicincontaining liposomes in an intracranial rat brain tumor model. Cancer Res, 2002. 62(9): p.2561-6.PubMedGoogle Scholar
  78. 78.
    Klein, S.A., et al., Angiogenesis inhibitor TNP-470 inhibits murine cutaneous wound healing. J Surg Res, 1999.82(2): p. 268-74.PubMedCrossRefGoogle Scholar
  79. 79.
    Garcia-Olmo, D.C., J. Paya, and D. Garcia-Olmo, Effects of perioperative treatment with TNP-470 on the resistance of colonic anastomoses in rats. Dig Surg, 2000. 17(2):p. 154-9.PubMedCrossRefGoogle Scholar
  80. 80.
    Chiang, S.c., et al., TNP-470 inhibits intraabdominal adhesion formation. J Pediatr Surg, 2000. 35(2): p. 189-96.PubMedCrossRefGoogle Scholar
  81. 81.
    Browder, T., et al., Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res, 2000. 60(7): p. 1878-86.PubMedGoogle Scholar
  82. 82.
    Klement, G., et al., Continuous low-dose therapy with vinblastine and VEGF receptor2 antibody induces sustained tumor regression without overt toxicity (see comments). J Clin Invest, 2000 Apr. 105(8): p. RI5-24.CrossRefGoogle Scholar
  83. 83.
    Vermeulen, P.B., et al., Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. Ann Oncol, 1995.6(1): p. 5964.PubMedGoogle Scholar
  84. 84.
    Klement, G., et al., Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res, 2002. 8(1): p. 221-32.PubMedGoogle Scholar
  85. 85.
    Vacca, A., et al., Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood, 1999.94(12): p. 4143-55.PubMedGoogle Scholar
  86. 86.
    Houghton, PJ., et al., Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol, 1995.36(5): p. 393-403.PubMedCrossRefGoogle Scholar
  87. 87.
    Bocci, G., KC, Nicolaou, and R.S. Kerbel, Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res, 2002. 62(23): p. 6938-43.PubMedGoogle Scholar
  88. 88.
    Germano, A., et al., A preliminary study of angiogenesis in paediatric glioblastoma multiforme and its correlation with survival. Childs Nerv Syst, 2001. 17(10): p. 577-83.PubMedCrossRefGoogle Scholar
  89. 89.
    Wesseling, P., et al., Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol, 1998.29(4): p. 3528.CrossRefGoogle Scholar
  90. 90.
    Assimakopoulou, M., et al., Microvessel density in brain tumors. Anticancer Res, 1997. 17(6D): p. 4747-53.PubMedGoogle Scholar
  91. 91.
    Abdulrauf, S.I., et al., Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg, 1998. 88(3): p. 513-20.PubMedCrossRefGoogle Scholar
  92. 92.
    Kleihues, P. and W.K. Cavenee, Pathology and Genetics of Tumours of the Nervous System, ed. P. Kleihues and W.K. Cavenee. 2000, Lyon: WHO.Google Scholar
  93. 93.
    Burger, P.c., et al., Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer, 1985.56(5): p. 1106-11.PubMedCrossRefGoogle Scholar
  94. 94.
    Machein, M.R. and K.H. Plate, VEGF in brain tumors. J Neurooncol, 2000. 50(1-2): p. 109-20.PubMedCrossRefGoogle Scholar
  95. 95.
    Shim, J.W., et al., Expression of bFGF and VEGF in brain astrocytoma. J Korean Med Sci, 1996. 11(2): p. 149-57.PubMedGoogle Scholar
  96. 96.
    DAmato, R.J., et al., Thalidomide is an inhibitor of angiogenesis. Proc Nat! Acad Sci U SA, 1994.91(9): p. 4082-5.CrossRefGoogle Scholar
  97. 97.
    Short, S.C., et al., Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neurooncol, 2001. 51(1): p. 41-5.PubMedCrossRefGoogle Scholar
  98. 98.
    Fine, H.A., et al., Phase 11 trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol, 2000 Feb. 18(4): p. 708-15.PubMedGoogle Scholar
  99. 99.
    Marx, G.M., et al., Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol, 2001. 54(1): p. 31-8.PubMedCrossRefGoogle Scholar
  100. 100.
    Groves, M.D., et al., Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol, 2002. 20(5): p. 1383-8.PubMedCrossRefGoogle Scholar
  101. 101.
    Brock, C.S., et al., Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res, 1998.58(19): p. 4363-7.PubMedGoogle Scholar
  102. 102.
    Sterba, J., Z. Pavelka, and P. Slampa, Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma, 2002. 49(2): p. 117-20.PubMedGoogle Scholar
  103. 103.
    Palmieri, G., et al., Interferon alpha-2b at low doses as long-term antiangiogenic treatment of a metastatic intracranial hemangioendothelioma: a case report. Oncol Rep, 2000.7(1): p. 145-9.PubMedGoogle Scholar
  104. 104.
    Mulne, A.F., et al., Oral methotrexate for recurrent brain tumors in children: a Pediatric Oncology Group study. J Pediatr Hematol Oncol, 2000. 22(1): p. 41-4.PubMedCrossRefGoogle Scholar
  105. 105.
    Ashley, D.M., et al., Response of recurrent medulloblastoma to low-dose oral etoposide. J Clin Oncol, 1996. 14(6): p. 1922-7.PubMedGoogle Scholar
  106. 106.
    Fulton, D., R. Urtasun, and P. Forsyth, Phase II study of prolonged oral therapy with etoposide (VPI6) for patients with recurrent malignant glioma. J Neurooncol, 1996. 27(2): p. 149-55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Mark W. Kieran
    • 1
  1. 1.Pediatric Medical Neuro-OncologyDana-Farber Cancer InstituteUSA

Personalised recommendations