Transition Metal Ions in Cloud Chemistry

  • L. Deguillaume
  • M. Leriche
  • A. Marinoni
  • N. Chaumerliac
Conference paper


Cloud, fog and rain chemistry have an important effect on both regional and global scales (Lelieveld and Crutzen, 1991; Jacob, 2000). Actually, there are still some remaining questions about processes in the atmospheric liquid phase related, in particular, to the role of transition metal ions, to the presence of VOCs (Volatile Organic Compounds), and to particulate matter that can act as cloud nuclei (Facchini, 2002).


Formaldehyde Hydrogen Peroxide Dust Mercury Manganese 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anastasio, C., Faust, B.C., and Allen, J.M., 1994, Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters, J. Geophys. Res. 99: 8231–8248.CrossRefGoogle Scholar
  2. Behra, P., and Sigg, L., 1990, Evidence for redox cycling of iron in atmospheric water droplets, Nature 344: 419–421.CrossRefGoogle Scholar
  3. Berry, E.X., and Reinhardt, R.L., 1974, An analysis of cloud drops growth by collection., J. Atmos. Sci. 31: 1814–2135.CrossRefGoogle Scholar
  4. Desboeufs, K.V., Losno, R., Vimeux, F., Cholbi, S., 1999, The pH-dependent dissolution of wind-transported Sanaran dust, J. Geophys. Res. 104-D17: 21287–21299.CrossRefGoogle Scholar
  5. Deutsch, F.; Hoffmann, P., Ortner, H.M., 2001, Field Experimental Investigations on the Fe(II)-and Fe(III)-Content in Cloudwater Samples, J. Atmos. Chem. 40-1: 87–105.CrossRefGoogle Scholar
  6. Erel, Y., Pekhonen, S.O., and Hoffmann, M., 1993, Redox Chemistry of Iron in fog and stratus clouds, J. Geophys. Res. 98: 18423–18434.CrossRefGoogle Scholar
  7. Facchini, M.C., Cloud, 2002, Atmospheric Chemistry and Climate, IGACtivities Newsletter, 26.Google Scholar
  8. Faust, B.C., 1994, Photochemistry, fogs, and aerosols, Environ. Sci. Technol. 28-5: 217.Google Scholar
  9. Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R., 2000, CAPRAM2.3: A chemical aqueous radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36: 231–284.CrossRefGoogle Scholar
  10. Hoigné, J., Zuo, Y., Nowell, L., 1994, Photochemical reactions in atmospheric waters: role of dissolved iron species, In: Helz, G.R., Zepp, R.G., Crosby, D.G. (Eds), Aquatic and Surface Photochemistry., Boca Raton, Lewis Publishers, pp. 75–84, and references cited therein.Google Scholar
  11. Jacob, D.J., Gottlieb, E.W., Prather, M.J., 1989, Chemistry of polluted cloudy boundary layer, J. Geophys. Res. 94: 12975–13002.CrossRefGoogle Scholar
  12. Jacob, D.J., 2000, Heterogeneous chemistry and tropospheric ozone, Atmos. Environ, 34: 2131–2159.CrossRefGoogle Scholar
  13. Jacobsen, F., Holcman, J., and Sehested, K., 1997a, Activation parameters of ferryl ion reactions in aqueous acid solutions, Int. J. Chem. Kinet. 29: 17–24.CrossRefGoogle Scholar
  14. Jacobsen, F., Holcman, J., Sehested, K., 1997b, Manganese (II) Superoxide complex in aqueous solutions, J. Phys.Chem. 101: 1324–1328.CrossRefGoogle Scholar
  15. Jacobsen, F., Holcman, J., Sehested, K., 1998a, Oxidation of manganese (II) by ozone and reduction of manganese (III) by hydrogen peroxide in acidic solution, Int. J. Chem Kinet. 30: 207–214.CrossRefGoogle Scholar
  16. Jacobsen, F., Holcman, J., Sehested, K., 1998b, Reaction of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kinet 30: 215–221.CrossRefGoogle Scholar
  17. Jickells, T.D., Knap, A.H., Church, T.M., 1984, Trace metals in Bermuda rainwater, J. Geophys. Res. 89-D1: 1423–1428.CrossRefGoogle Scholar
  18. Khaikin, G.I., Alfassi, Z.B., Huie, R.E., and Neta, P., 1996, Oxidation of ferrous and ferrocyanide ions by peroxyl radicals, J. Phys. Chem. 100: 7072–7077.CrossRefGoogle Scholar
  19. Lelieved, J., and Crutzen, P.J., 1991, The role of clouds in tropospheric photochemistry, J. Atmos. Chem. 12: 229–227.CrossRefGoogle Scholar
  20. Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B., 2000, A model for tropospheric multiphase chemistry: Application to one cloudy event during the CIME experiment, Atmos. Environ. 34: 5015–5036.CrossRefGoogle Scholar
  21. Leriche, M., Chaumerliac, N., and Monod, A., 2001, Coupling quasi-spectral microphysics with multiphase chemistry: A case study of a polluted air mass at the top of the Puy de Dôme mountain (France), Atmos. Environ. 35:5411–5423.CrossRefGoogle Scholar
  22. Leriche, M., Deguillaume, L., Chaumerliac, N., 2003, Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime, submitted to J. Geophys. Res. Google Scholar
  23. Lim, B., Jickells, T.D., Colin, J.L., and Losno, R., 1993, Solubilities of Al, Pb, Cu, and Zn in rain sampled in the marine environment over the North Atlantic Ocean and Mediterranean Sea, Global Biogeochemical Cycles 8: 349–362.CrossRefGoogle Scholar
  24. Logager, T., Holcman, J., Sehested, K., and Petersen, T, 1992, Oxidation of ferrous ions by ozone, Inorg. Chem. 31:3523–3529.CrossRefGoogle Scholar
  25. McElroy, W. J., Waygood, S.J., 1990, Kinetics of the reactions of the SO4 radical with SO4 , S2O8 2−, H2O and Fe2+, J. Chem. Soc. Faraday Trans. 86: 14, 2557–2564.CrossRefGoogle Scholar
  26. Madronich, S. and J.G. Calvert, 1990, The NCAR Master Mechanism of the gas phase chemistry, NCAR technical Note, TN-333+SRT, Boulder Colorado.Google Scholar
  27. Madronich S., and Flocke., S., 1999, The role of solar radiation in atmospheric chemistry. in Handbook of Environmental Chemistry (P. Boule, ed.), Springer-Verlag, Heidelberg, pp. 1–26.Google Scholar
  28. Nimmo, M., Fones, G.R., 1997, The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters, Atmos. Environ. 31-5: 693–702.CrossRefGoogle Scholar
  29. Pehkonen, S.O., Erel, Y., Hoffmann, M.R., 1992, Simultaneous spectrophotometric measurement of Fe(II) and Fe(III) in atmospheric water, Environ. Sci. Technol. 26-9: 1731–1776.CrossRefGoogle Scholar
  30. Piechowski, M. von, Nauser, T., Hoignè, T., and Buhler, R. E., 1993, O2 decay catalysed by Cu3+and Cu+ ions in aqueous solutions: a pulse radiolysis study for atmospheric chemistry, Ber. Bunsenges. Phys. Chem. 97:762–771.CrossRefGoogle Scholar
  31. Ross, H.B., 1987, Trace metals in precipitation in Sweden, Water Air and Soil Pollution 36: 349–353.CrossRefGoogle Scholar
  32. Rosseinsky, D.R., 1963, The reaction between Mercury(I) and Managanese(II) in aqueous perchlorate solution, J. Chem. Soc.: 1181–1186.Google Scholar
  33. Ruggaber, A., Dlugi, R., Bott, A., Forkel, R., Hermann, H., and Jacobi, H.-W., 1997, Modelling of radiation quantities and photolysis frequencies in the aqueous-phase in the troposphere, Atmos. Environ. 31: 3137–3150.CrossRefGoogle Scholar
  34. Rush, J.D., and Bielski, B.H.J., 1985, Pulse radiolytic studies of the reactions of HO2/O2 with Fe(II)/Fe(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem 89: 5062–5066.CrossRefGoogle Scholar
  35. Schwanz, M., Warneck, P., Preiss, M., Hoffmann, P., 1998, Chemical speciation of iron in fog water, Contr. Atmos. Phys. 71-1: 131–143.Google Scholar
  36. Schwartz, S.E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds, in: Chemistry of Multiphase Atmospheric Systems, Jaeschke, W. Eds., NATO ASI Series, G6, Spinger-Verlag, pp. 415–471.CrossRefGoogle Scholar
  37. Sedlak, D.L., Hoigné, J., David, M.M., Colvile, R.N., Seyffer, E., Acker, K., Wiepercht, W., Lind, J.A., and Fuzzi, S., 1997, The cloudwater chemistry of iron and copper at Great Dun Fell, U.K., Atmos. Environ. 31: 2515–2526.CrossRefGoogle Scholar
  38. Sheng, H.L., 1993, J. Chem. Tech. Biotechnol., 56: 163–167.Google Scholar
  39. Siefert, R.L., Pehkonen, S.O., Erel, Y., Hoffmann, M.R., 1994, Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids, Geochimica et Cosmochimica Acta 58-15: 3271–3279.CrossRefGoogle Scholar
  40. Spokes, L.J., Jickells, T.D., and Lim, B., 1994, Solubilisation of aerosol trace metals by cloud processing: a Laboratory Study, Geochimica and Cosmochimica Acta 58-15: 3281–3287.CrossRefGoogle Scholar
  41. Spokes, L.J., Lucia, M., Campos, A.M., and Jickells, T.D., 1996, The role of organic matter in controlling copper speciation in precipitation, Atmos. Environ. 30: 3959–3966.CrossRefGoogle Scholar
  42. Stuglik, Z., Zagorski, Z.P., 1981, Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals, Radiat. Phys. Chem. 17: 229.Google Scholar
  43. Sulzberger, B., Laubscher, H., Karametaxas, G., 1994, In: Helz, G.R., Zepp, R.G., Crosby, D.G. (Eds), Aquatic and Surface Photochemistry., Lewis Publishers, Boca Raton, pp. 53–73, and references cited therein.Google Scholar
  44. Sulzberger, B., Laubscher, H., 1995, Reactivity of various types of iron (III)(hydr)oxides towards light-induced dissociation, Marine Chemistry 50: 103–115.CrossRefGoogle Scholar
  45. Warneck, P., 2000, Chemistry of the natural atmosphere, International Geophysics Series, Vol. 71, Academic Press, pp. 927.Google Scholar
  46. Zuo, Y., and Hoigné, J., 1992, Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato compounds, Environ. Sci. Technol., 26: 1014–1022.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • L. Deguillaume
    • 1
  • M. Leriche
    • 1
  • A. Marinoni
    • 1
  • N. Chaumerliac
    • 1
  1. 1.LaMP/OPGC, Université Blaise PascalAubièreFrance

Personalised recommendations