A Molecular Tool Kit for Fungal Biotechnology

  • John E. Hamer


Fungal biotechnology increasingly relies on a set of tools to facilitate genetic manipulations for better economic outcomes (Table 3.1). In this chapter I will review some of the newer tools and technologies that can be used to advance biotechnology programs with fungi. For the purposes of this chapter I have focussed on tools applicable to heterotrophic filamentous ascomycetes, by far the most important fungi for biotechnology, but with some creativeness, these techniques can likely be adapted for a broader range of fungi. It is important to point out that the success or efficiency of any particular technology is generally fungal-specific. For example, rates of protoplast regeneration, transformation frequency, and degree of gene targeting are all variable depending on the fungal species and even the genetic background of particular strains.


Filamentous Fungus Cryptococcus Neoformans Protoplast Fusion Aspergillus Nidulans Candida Glabrata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksenko, A., and Clutterbuck, A.J. (1997). Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol. 21, 373–387.PubMedCrossRefGoogle Scholar
  2. Bennett, J.W., and Lasure, L.L. (1985). Gene Manipulations in Fungi. Academic Press, San Diego.Google Scholar
  3. Bennett, J.W., and Lasure, L.L. (1991). More Gene Manipulations in Fungi. Academic Press, San Diego.Google Scholar
  4. Brown, J.S., Aufauvre-Brown, A., Brown, J., Jennings, J.M., Arst, H.Jr., and Holden, D.W. (2000). Signaturetagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol. Microbiol. 36, 1371–1380.PubMedCrossRefGoogle Scholar
  5. Brown, J.S., Aufauvre-Brown, A., and Holden, D.W. (1998). Insertional mutagenesis in Aspergillus fumigatus. Mol Gen. Genet. 259, 327–335.PubMedCrossRefGoogle Scholar
  6. Caddick, M.X., Greenland, A.J., Jepson, I., Krause, K.P., Qu, N., Riddell, K.V., Salter, M.G., Schuch, W., et al. (1998). An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnol. 16, 177–180.CrossRefGoogle Scholar
  7. Chaure, P., Gurr, S.J., and Spanu, P. (2000). Stable transformation of Erysiphe graminis, an obligate biotrophic pathogen of barley. Nature Biotechnol. 18, 205–207.CrossRefGoogle Scholar
  8. Chaveroche, M.K., Ghigo, J.M., and d’Enfert, C. (2000). A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97.PubMedCrossRefGoogle Scholar
  9. Chiang, S.L., Mekalanos, J.J., and Holden, D.W. (1999). In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol. 53, 129–154.PubMedCrossRefGoogle Scholar
  10. Cormack, B.P., Ghori, N., and Falkow, S. (1999). An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285, 578–582.PubMedCrossRefGoogle Scholar
  11. Daboussi, M.J. (1997). Fungal tranponsable elements and genome evolution. Genetica 100, 253–260.PubMedCrossRefGoogle Scholar
  12. Davidson, R.C., Cruz, M.C., Sia, R.A., Allen, B., Alspaugh, J.A., and Heitman, J. (2000). Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet. Biol. 29, 38–48.PubMedCrossRefGoogle Scholar
  13. de Backer, M.D., Nelissen, B., Logghe, M., Viaene, J., Loonen, I., Vandoninck, S., de Hoogt, R., Dewaele, S. et al. (2001). An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nature Biotechnol. 19, 235–241.CrossRefGoogle Scholar
  14. de Backer, M.D., Raponi, M., and Arndt, G.M. (2002). RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr. Opin. Microbiol. 5, 323–329.PubMedCrossRefGoogle Scholar
  15. Fields, S., and Bartel, P.L. (2001). The two-hybrid system. A personal view. Methods Mol. Biol. 177, 3–8.PubMedGoogle Scholar
  16. Gorlach, J.M., McDade, H.C., Perfect, J.R., and Cox, G.M. (2002). Anti-sense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology 148, 213–219.PubMedGoogle Scholar
  17. Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Lo, C., Tarpey, R.W., Skalchunes, A.R. et al. (2001). Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. U.S.A. 98, 5110–5115.CrossRefGoogle Scholar
  18. Harris, S.D., and Hamer, J.E. (1995). sepB: An Aspergillus nidulans gene involved in chromosome segregation and the initiation of cytokinesis. EMBO J. 14, 5244–5257.PubMedGoogle Scholar
  19. Haselbeck, R., Wall, D., Jiang, B., Ketela, T, Zyskind, J., Bussey, H., Foulkes, J.G., and Roemer, T. (2002). Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr. Pharm. Design. 8, 1155–1172.CrossRefGoogle Scholar
  20. Javerzat, J.P, Bhattacherjee, V., and Barreau, C. (1993). Isolation of telomeric DNA from the filamentous fungus Podospora anserina and construction of a self-replicating linear plasmid showing high transformation frequency. Nucleic Acids Res. 21, 497–504.PubMedCrossRefGoogle Scholar
  21. Kelly, R., Card, D., Register, E., Mazur, P., Kelly, T, Tanaka, K.I., Onishi, J., Williamson, J.M. et al. (2000). Geranylgeranyltransferase I of Candida albicans: Null mutants or enzyme inhibitors produce unexpected phenotypes. J. Bacteriol. 182, 704–713.PubMedCrossRefGoogle Scholar
  22. Kumar, A., and Snyder, M. (2001). Emerging technologies in yeast genomics. Nat. Rev. Genet. 2, 302–312.PubMedCrossRefGoogle Scholar
  23. Liu, Q., Li, M.Z., Leibham, D., Cortez, D., and Elledge, S.J. (1998). The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8, 1300–1309.PubMedCrossRefGoogle Scholar
  24. Marhoul, J.F., and Adams, T.H. (1995). Identification of developmental regulatory genes in Aspergillus nidulans by overexpression. Genetics 139, 537–547.PubMedGoogle Scholar
  25. Migheli, Q., Steinberg, C., Daviere, J.M., Olivain, C., Gerlinger, C., Gautheron, N., Alabouvette, C., and Daboussi, M.J. (2000). Recovery of mutants impaired in pathogenicity after transposition of Impala in Fusarium oxysporum f. sp melonis. Phytopathol. 90, 1279–1284.CrossRefGoogle Scholar
  26. Nelson, R.T., Hua, J., Pryor, B., and Lodge, J.K. (2001). Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157, 935–947.PubMedGoogle Scholar
  27. Nicosia, M.G.L., Brocard-Masson, C., Demais, S., Van, H., Daboussi, M.J., and Scazzocchio, C. (2001). Heterologous transposition in Aspergillus nidulans. Mol. Microbiol. 39, 1330–1344.CrossRefGoogle Scholar
  28. Phizicky, E.M., and Fields, S. (1995). Protein-protein interactions: Methods for detection and analysis. Microbiol. Rev. 59, 94–123.PubMedGoogle Scholar
  29. Punt, P.J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., and van den Hondel, C.A.M.J.J. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 20, 200–206.PubMedCrossRefGoogle Scholar
  30. Romano, N., and Macino, G. (1992). Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353.PubMedCrossRefGoogle Scholar
  31. Royer, J.C., Christianson, L.M., Yoder, W.T., Gambetta, G.A., Klotz, A.V., Morris, C.L., Brody, H., and Otani, S. (1999). Deletion of the trichodiene synthase gene of Fusarium venenatum: Two systems for repeated gene deletions. Fungal Genet. Biol. 28, 68–78.PubMedCrossRefGoogle Scholar
  32. Sauer, B. (1996). Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucl. Acids Res. 24, 4608–4613.PubMedCrossRefGoogle Scholar
  33. Shuster, J.R., and Connelley, M.B. (1999). Promoter-tagged restriction enzyme-mediated insertion (PT-REMI) mutagenesis in Aspergillus niger. Mol. Gen. Gent. 262, 27–34.Google Scholar
  34. Speulman, E., Metz, P., Arkel, G., Hekkert, B., Stiekema, W., and Perira, A. (1999). A two component enhancerinhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11, 1853–1866.PubMedGoogle Scholar
  35. Sweigard, J.A., and Ebbole, D.J. (2001). Functional analysis of pathogenicity genes in a genomics world. Curr. Opin. Microbiol. 4, 387–392.PubMedCrossRefGoogle Scholar
  36. Talbot, N. (2001). Molecular and Cellular Biology of Filamentous Fungi. A Practical Approach. Oxford University Press, Oxford.Google Scholar
  37. Villalba, F., Lebrun, M.H., Hua-Van, A., Daboussi, M.J., and Grosjean-Cournoyer, M.C. (2001). Transposon Impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 14, 308–315.PubMedCrossRefGoogle Scholar
  38. Waring, R.B., May, G.S., and Morris, N.R. (1989). Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79, 119–130.PubMedCrossRefGoogle Scholar
  39. Xiang, X., Beckwith, S.M., and Morris, N.R. (1994). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci. U.S.A. 91, 2100–2104.PubMedCrossRefGoogle Scholar
  40. Yang, Y.H., and Speed, T. (2002). Design issues for cDNA microarray experiments. Nature Rev. Genet. 3, 579–588.PubMedGoogle Scholar
  41. Zhang, Y.-Z., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P.C., and del Cardayre, S.B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644–646.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • John E. Hamer
    • 1
  1. 1.Paradigm Genetics Inc.Research Triangle ParkNorth Carolina

Personalised recommendations