Enzymatic reactions and biotransformations catalyzed by fungal enzymes and used in industry, agriculture, food technology, and medicine have increased in importance tremendously in recent years. Many efforts have been made to detect new sources of enzymes and to adapt these biological catalysts, for example, by methods of gene technology and protein engineering, to new applications for human or commercial benefit. This will be the subject of approximately half of this chapter. On the other hand, enzymatic activities of fungi can damage various products of human endeavor. Fungi may use these products for their growth and development, degrading, destroying, or inactivating many substances and products in the process. This phenomenon is the cause of serious losses such as the destruction of food supplies and plant stocks, the ruination of wood structures, the damage of leather or textile goods, or the inactivation of food preservatives, biocides, and fungicides. These fungal activities and the enzymes involved will be covered in the second part of this chapter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadulla, E., Tzanov, T., Costa, S., Robra, K.-H., Cavaco-Paulo, A., and Gübitz, G.M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 66, 3357–3362.PubMedCrossRefGoogle Scholar
  2. Abelson, P.H. (1999). A potential phosphate crisis. Science 283, 2015.PubMedCrossRefGoogle Scholar
  3. Acunaarguelles, M.E., Gutierrezrojas, M., Viniegragonzales, G., and Favelatorres, E. (1995). Production and properties of 3 pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43, 808–814.CrossRefGoogle Scholar
  4. Adler-Nissen, J. (1987). Newer uses of microbial enzymes in food processing. Trends Biotechnol. 5, 170–174.CrossRefGoogle Scholar
  5. Adeboya, M.O., Edwards, R.L., Lassoe, T., Maitland, D.J., Shields, L., and Whalley, A.J.S. (1996). Metabolites of the higher fungi. 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. A spirocyclohexadienone, a depsidone and three diphenyl ethers: Keys in the depsidone biosynthetic pathway from a member of the fungus Xylaria. J. Chem. Soc. Perk. Trans. I 1996, 1419–1425.Google Scholar
  6. Adriaens, P. and Grbic-Galić, D. (1994). Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29, 2253–2259.CrossRefGoogle Scholar
  7. Aggelis, G., Ehaliotis, C., Nerud, F., Stoychev, I., Lyberatos, G., and Zervakis, G.I. (2002). Evaluation of whiterot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl. Microbiol. Biotechnol. 59, 353–360.PubMedCrossRefGoogle Scholar
  8. Ahlborg, U.G. and Thunberg, T.M. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism and environmental impact. CRC Crit. Rev. Toxicol. 7, 1–36.CrossRefGoogle Scholar
  9. Ahn, M.Y., Dec, J., Kim, J.E., and Bollag, J.M. (2000). Use of free and immobilized laccase for the decontamination of soil polluted with 2,4-dichlorophenol. Abstr. Pap. Am. Chem. Soc. 220, 308-ENVR Part 1.Google Scholar
  10. Aiken, B.S. and Logan, B.E. (1996). Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulfonate media. Biodegradation 7, 175–182.PubMedCrossRefGoogle Scholar
  11. Aktas, N., Cicek, H., Unal, A.T., Kibarer, G., Kolankaya, N., and Tanyolac, A. (2001). Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Biores. Technol. 80, 29–36.CrossRefGoogle Scholar
  12. Alexandre, G. and Bally, R. (1999). Emergence of laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol. Lett. 174, 371–378.PubMedCrossRefGoogle Scholar
  13. Ali, T.A. and Wainwright, A.M. (1994). Growth of Phanerochaete chrysosporium in soil and its ability to degrade the fungicide benomyl. Biores. Technol. 49, 197–201.CrossRefGoogle Scholar
  14. Alleman, B.C., Logan, B.E., and Gilbertson, R.L. (1995). Degradation of pentachlorophenol by fixed films of white-rot fungi in rotating tube bioreactors. Water Res. 29, 61–67.CrossRefGoogle Scholar
  15. Altamirano, M.M., Blackburn, J.M., Aguayo, C., and Fersht, A.R. (2000). Directed evolution of new catalytic activity using α/β-barrel scaffold. Nature 403, 617–622.PubMedCrossRefGoogle Scholar
  16. Amitai, G., Adani, R., Sod-Moriah, G., Rabinovitz, I., Vincze, A., Leader, H., Chefetz, B., Leibovitz-Persky et al. (1998). Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett. 438, 195–200.PubMedCrossRefGoogle Scholar
  17. Ander, P. and Eriksson, K.-E.L. (1976). The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 109, 1–8.CrossRefGoogle Scholar
  18. Anderson, S.O. (1985). Sclerotization and tanning in cutide. In G.A. Kerkut and L.I. Gillert (eds.) Comparative insect physiology, biochemistry, and pharmacology (Vol. 3). Pergamin Press, Oxford, pp. 59–64.Google Scholar
  19. Antorini, M., Herpoel-Gimpert, I., Choinowski, T., Sigoillot, J.C., Aster, M., Winterhalter, K., and Piontek, K. (2002). Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim. Biophys. Acta 1594, 109–114.PubMedCrossRefGoogle Scholar
  20. April, T.M., Foght, J.M., and Currah, R.S. (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol. 46, 38–49.PubMedCrossRefGoogle Scholar
  21. Archer, D.B. (2000). Filamentous fungi as microbial cell factories for food use. Curr. Opin. Biotechnol. 11, 478–483.PubMedCrossRefGoogle Scholar
  22. Armengaud, J. and Timmis, K.N. (1997). Biodegradation of dibenzofuran-p-dioxin and dibenzofuran by bacteria. J. Microbiol. 35, 241–252.Google Scholar
  23. Arnold, F.H. and Volkov, A.A. (1999). Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59.PubMedCrossRefGoogle Scholar
  24. Arthur, M.F. and Frea, J.I. (1989). 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Aspects of its important properties and its potential biodegradation in soils. J. Environ. Qual. 18, 1–11.CrossRefGoogle Scholar
  25. Atlas, R.M. (1984). Petroleum microbiology. Macmillan Publ. Co., New York.Google Scholar
  26. Atanassov, P. (2002). Laccase-catalyzed direct electron transfer: Application in bio-fuel cell cathode. Abstr. Pap. Am. Chem. Soc. 223, 378-COLL Part 1.Google Scholar
  27. Balakshin, M., Capanema, E., Chen, C.L., Gratzl, J., Kirkman, A., and Gracz, H. (2001). Biobleaching of pulp with dioxygen in the laccase-mediator system—reaction mechanisms for degradation of residual lignin. J. Mol. Catal. B—Enzym. 13, 1–16.CrossRefGoogle Scholar
  28. Baldrian, P. and Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 206, 69–74.PubMedCrossRefGoogle Scholar
  29. Ballerstedt, H., Kraus, A., and Lechner, U. (1997). Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale river sediment. Environ. Sci. Technol. 31, 1749–1753.CrossRefGoogle Scholar
  30. Banat, I.M., Nigam, P., Singh, D., and Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Biores. Technol. 58, 217–227.CrossRefGoogle Scholar
  31. Barensi, R.I., Chellegatti, M.A.D.C., Fonseca, M.J.V., and Said, S. (2001). Partial purification and characterization of exopolygalacturonase II and III of Penicillium frequentans. Braz. J. Microbiol. 31, 327–330.CrossRefGoogle Scholar
  32. Barrientos, L., Scott, J.J., and Murthy, P.P.N. (1994). Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 106, 1489–1495.PubMedCrossRefGoogle Scholar
  33. Barton, S.C., Kim, H.H., Binyamin, G., Zhang, Y.C., and Heller, A. (2001). Electroreduction of O2 to water on the “wired” laccase cathode. J. Phys. Chem. B 105, 11917–11921.CrossRefGoogle Scholar
  34. Beaudette, L.A., Davies, S., Fedorak, P.M., Ward, O.P., and Pickard, M.A. (1998). Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white-rot fungi. Appl. Environ. Microbiol. 64, 2020–2025.PubMedGoogle Scholar
  35. Beaudette, L.A., Ward, O.P., Pickard, M.A., and Fedorak, P.M. (2000). Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett. Appl. Microbiol. 30, 155–160.PubMedCrossRefGoogle Scholar
  36. Beg, Q.K., Kapoor, M., Mahajan, L., and Hoondal, G.S. (2001). Microbial xylanases and their industrial application: A review. Appl. Microbiol. Biotechnol. 56, 326–338.PubMedCrossRefGoogle Scholar
  37. Behnke, U. and Täufel, A. (1994). Peptidases. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 779–831.Google Scholar
  38. Bennet, J.W. (1998). Mycotechnology: The role of fungi in biotechnology. J. Biotechnol. 66, 101–107.CrossRefGoogle Scholar
  39. Benoit, P., Barriuso, E., and Calvet, R. (1998). Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 37, 1271–1282.CrossRefGoogle Scholar
  40. Berka, R.M., Rey, M.W., Brown, K.M., Byun, T., and Klotz, A.V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423–4427.PubMedGoogle Scholar
  41. Berka, R.M., Schneider, P., Golightly, E.J., Brown, S.H., Madden, M., Brown, K.M., Halkier, T., Mondorf, K. et al. (1997). Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme produced in Aspergillus oryzae. Appl. Environ. Microbiol. 63, 3151–3157.PubMedGoogle Scholar
  42. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., and Mougin, C. (2002a). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333.PubMedCrossRefGoogle Scholar
  43. Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., Mougin, C., and Briozzo, P. (2002b). Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Acta Crystallogr. D — Biol. Crystallogr. 58, 319–321.PubMedCrossRefGoogle Scholar
  44. Beurskens, J.E.M., Toussaint, M., de Wolf, J., van der Steen, J.M.D., Lot, P.C., Commandeur, L.C.M., and Parson, J.R. (1995). Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 14, 939–943.CrossRefGoogle Scholar
  45. Bezalel, L., Hadar, Y., and Cernigila, C.E. (1996). Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 292–295.PubMedGoogle Scholar
  46. Bhalerao, U.T., Muralikrishna, C., and Rani, B.R. (1994). Laccase enzyme-catalyzed efficient synthesis of 3-substituted-1,2,4-triazolo(4,3-b)(4,1,2)benzothiadiazine-8-ones. Tetrahedron 50, 4019–4024.CrossRefGoogle Scholar
  47. Bhargava, H.N. and Leonard, P.A. (1996). Triclosan: Applications and safety. Am. J. Infect. Control 24, 209–218.PubMedCrossRefGoogle Scholar
  48. Bhat, M.K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383.PubMedCrossRefGoogle Scholar
  49. Biely, P., Vrsanska, M., Tenkanen, M., and Kluepfel, D. (1997). Endo-β-1,4-xylanase families: Differences in catalytic properties. J. Biotechnol. 57, 151–166.PubMedCrossRefGoogle Scholar
  50. Blakely, J.K., Neher, D.A., and Spongberg, A.L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl. Soil Ecol. 21, 71–88.CrossRefGoogle Scholar
  51. Bogan, B.W. and Lamar, R.T. (1995). One-electron oxidation in the degradation of creosote polycyclic aromatic-hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 2631–2635.PubMedGoogle Scholar
  52. Bogan, B.W. and Lamar, R.T. (1996). Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 62, 1597–1603.PubMedGoogle Scholar
  53. Bogan, B.W., Schoenike, B., Lamar, R.T., and Cullen, D. (1996). Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 62, 3697–3703.PubMedGoogle Scholar
  54. Bohmer, S., Messner, K., and Srebotnik, E. (1998). Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem. Biophys. Res. Comm. 244, 233–238.PubMedCrossRefGoogle Scholar
  55. Bonnen, A.M., Anton, L.H., and Orth, A.B. (1994). Lignin-degrading enzymes of the commercial button mushroom Agaricus bisporus. Appl. Environ. Microbiol. 60, 960–965.PubMedGoogle Scholar
  56. Borejsza-Wysocki, W., Lester, C., Attygalle, A.B., and Hrazdina, G. (1999). Elicited cell suspension cultures of apple (Malus X domestica) cv. Liberty produce biphenyl phytoalexins. Phytochemistry 50, 231–235.CrossRefGoogle Scholar
  57. Bornscheuer, U.T. (2002). Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73–81.PubMedCrossRefGoogle Scholar
  58. Borriss, R. (1987). Biology of enzymes. In H.J. Rehm and G. Reed (eds.) Biotechnology. VCH Verlagsgesellsch, Weinheim, pp. 35–62.Google Scholar
  59. Borriss, R. (1994a). β-glucan hydrolyzing enzymes. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 728–757.Google Scholar
  60. Borriss, R. (1994b). Structure and function of the genes encoding for bacterial endo 1,3-1,4-β-glucanases. Curr. Top. Mol. Genet. (Life Sci. Adv.), 163–188.Google Scholar
  61. Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P., and Yaguchi, M. (1995). Lignin oxidation by laccase isoenzymes from Trametes versicolor and role of the mediator 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61, 1876–1880.PubMedGoogle Scholar
  62. Braun-Lullemann, A., Hüttermann, A., and Majcherczyk, A. (1999). Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 53, 127–132.CrossRefGoogle Scholar
  63. Bressler, D.C., Fedorak, P.M., and Pickard, M.A. (2000). Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol. Lett. 22, 1119–1125.CrossRefGoogle Scholar
  64. Brinch, D.S. and Pedersen, P.B. (2002). Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food Addit. Contam. 19, 323–334.PubMedCrossRefGoogle Scholar
  65. Brinch-Pedersen, H., Dahl-Sorensen, L., and Holm, P.B. (2002). Engineering crop plants: Getting a handle on phosphate. Trends Plant Sci. 7, 118–125.PubMedCrossRefGoogle Scholar
  66. Brown, M.A., Zhao, Z.W., and Mauk, A.G. (2002). Expression and characterization of a recombinant multicopper oxidase: Laccase IV from Trametes versicolor. Inorg. Chim. Acta 331, 232–238.CrossRefGoogle Scholar
  67. Brul, S. and Coote, P. (1999). Preservative agents in foods—mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50, 1–17.PubMedCrossRefGoogle Scholar
  68. Budziszewski, G.J., Croft, K.P.C., and Hildebrand, D.F. (1996). Uses of biotechnology in modifying plant lipids. Lipids 31, 557–569.PubMedCrossRefGoogle Scholar
  69. Bühler, M. and Schindler, J. (1984). Aliphatic hydrocarbons. In K. Kieslich (ed.) Biotransformations (Biotechnology Vol. 6, Series ed. Rehm, H.-J. and Reed, G.). Verlag Chemie, Weinheim, pp. 329–385.Google Scholar
  70. Bumpus, J.A. (1989). Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Envrion. Microbiol. 55, 154–158.Google Scholar
  71. Bumpus, J.A. and Aust, S.D. (1987). Biodegradation of chlorinated organic compounds by Phanerochaete chrysosporium a wood rotting fungus. ACS Symp. Ser. 338, 340–349.CrossRefGoogle Scholar
  72. Bunge, M., Ballerstedt, H., and Lechner, U. (2001). Regiospecific dechlorination of spiked tetra-and trichlordibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere 43, 675–681.PubMedCrossRefGoogle Scholar
  73. Burke, R.M. and Cairney, J.W.G. (2002). Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 12, 105–116.PubMedCrossRefGoogle Scholar
  74. Buswell, J.A., Cai, Y.J., and Chang, S.T. (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol. Lett. 128, 81–87.CrossRefGoogle Scholar
  75. Cajal, Y., Svendsen, A., de Bolos, J., Patkar, S.A., and Alsina, M.A. (2000). Effect of the lipid interface on the catalytic activity and spectroscopic properties of a fungal lipase. Biochimie 82, 1053–1061.PubMedCrossRefGoogle Scholar
  76. Cameron, M.D. and Aust, S.D. (1999). Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 367, 115–121.PubMedCrossRefGoogle Scholar
  77. Cardenas, F., Alvarez, E., de Castro-Alvarez, M.S., Sanchez-Monteri, J.M., Valmaseda, M., Elson, S.E., and Sinisterra, J.V. (2001a). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B—Enzym. 14, 111–123.CrossRefGoogle Scholar
  78. Cardenas, F. de Castro, M.S., Sanchez-Montero, J.M., Sinisterra, J.V., Valmaseda, M., Elson, S.W., and Alvarez, E. (2001b). Novel microbial lipases: Catalytic activity in reactions in organic media. Enzyme Microb. Technol. 28, 145–154.PubMedCrossRefGoogle Scholar
  79. Cary, J.W., Brown, R., Cleveland, T.E., Whitehead, M., and Dean, R.A. (1995). Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus. Gene 153, 129–133.PubMedCrossRefGoogle Scholar
  80. Cassland, P. and Jonsson, L.J. (1999). Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl. Microbiol. Biotechnol. 52, 393–400.PubMedCrossRefGoogle Scholar
  81. Castillo, M.D., Andersson, A., Ander, P., Stenstrom, J., and Torstensson, L. (2001). Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation systems intended for degradation of pesticides. World J. Microbiol. Biotechnol. 17, 627–633.CrossRefGoogle Scholar
  82. Castro-Sowinski, S., Martinez-Drets, G., and Okon, Y. (2002). Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol. Lett. 209, 119–125.PubMedCrossRefGoogle Scholar
  83. Cerniglia, C.E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331–338.CrossRefGoogle Scholar
  84. Cerniglia, C.E. and Crow, S.A. (1981). Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129, 9–13.CrossRefGoogle Scholar
  85. Cerniglia, C.E., Freeman, J.P., and Mitchum, R.K. (1982). Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl. Environ. Microbiol. 43, 1070–1075.PubMedGoogle Scholar
  86. Cerniglia, C.E., Morgan, J.C., and Gibson, D.T. (1979). Bacterial and fungal oxidation of dibenzofuran. Biochem. J. 180, 175–185.PubMedGoogle Scholar
  87. Cerniglia, C.E., Sutherland, J.B., and Crow, S.A. (1992). Fungal metabolism of aromatic hydrocarbons. In G. Winkelmann (ed.) Microbial degradation of natural products. VCH Verlagsgesellschaft, Weinheim, pp. 193–217.Google Scholar
  88. Chiu, S.W., Ching, M.L., Fong, K.L., and Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol. Res. 102, 1553–1562.CrossRefGoogle Scholar
  89. Chivukula, M. and Renganathan, V. (1995). Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 61, 4374–4377.PubMedGoogle Scholar
  90. Cho, N.S., Nam, J.H., Park, J.M., Koo, CD., Lee, S.S., Pashenova, N., Ohga, S., and Leonowicz, A. (2001). Transformation of chlorophenols by white-rot fungi and their laccase. Holzforschung 55, 579–584.CrossRefGoogle Scholar
  91. Cirigliano, M.C. and Carman, G.M. (1985). Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 50, 846–850.PubMedGoogle Scholar
  92. Claussen, M. and Schmidt, S. (1998). Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum. Res. Microbiol. 149, 399–406.PubMedCrossRefGoogle Scholar
  93. Cliffe, S., Fawer, M.S., Maier, G., Takata, K., and Ritter, G. (1994). Enzyme assays for the phenolic content of natural juices. J. Agric. Food Chem. 42, 1824–1828.CrossRefGoogle Scholar
  94. Cocchietto, M., Skert, N., Nimis, P.L., and Sava, G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften 89, 137–146.PubMedCrossRefGoogle Scholar
  95. Cohen, M.S. and Gabriele, P.D. (1982). Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44, 23–27.PubMedGoogle Scholar
  96. Collett, O. (1992). Aromatic-compounds as growth substrates for isolates of the brown-rot fungus Lentinus lepideus (Fr ex Fr.). Fr. Mater. Organismen 27, 67–77.Google Scholar
  97. Collins, B.M., McLachlan, J.A., and Arnold, S.F. (1997). The estrogenic and antiestrogenic activities of phytochemicals with human estrogen receptor expressed in yeast. Steroids 62, 365–372.PubMedCrossRefGoogle Scholar
  98. Collins, P.J. and Dobson, A.D.W. (1997). Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63, 3444–3450.PubMedGoogle Scholar
  99. Collins, P.J., Kotterman, M.J.J., Field, J.A., and Dobson, A.D.W. (1996). Oxidation of anthracene and benzo[a]pyrene by laccase from Trametes versicolor. Appl. Environ. Microbiol. 62, 4563–4567.PubMedGoogle Scholar
  100. Conesa, A., Punt, P.J., and van den Hondel, C.A.M.J.J. (2002). Fungal peroxidases: Molecular aspects and applications. J. Biotechnol. 93, 143–158.PubMedCrossRefGoogle Scholar
  101. Conneely, A., Smyth, W.F., and McMullan, G. (2002). Study of the white-rot fungal degradation of selected pthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal. Chim. Acta 451, 259–270.CrossRefGoogle Scholar
  102. Cortes, D., Barrios-Gonzales, J., and Tomasini, A. (2002). Pentachlorophenol tolerance and removal by Rhizopus nigricans in solid-state culture. Process Biochem. 37, 881–884.CrossRefGoogle Scholar
  103. Cortez, D.A.G., Young, M.C.M., Marston, A., Wolfender, J.L., and Hostettmann, K. (1998). Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea. Phytochemistry 47, 1367–1374.CrossRefGoogle Scholar
  104. Coughlan, M.P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application, Biotechnol. Genet. Eng. 3. In G.E. Russell (ed.) Biotechnology and genetic engineering Intercept, Newcastle Upon Tyne, pp. 39–109.Google Scholar
  105. Cox, J.C. and Golbeck, J.H. (1985). Hydroxylation of biphenyl by Aspergillus parasiticus: Approaches to yield improvement in fermentor cultures. Biotechnol. Bioeng. 27, 1395–1402.PubMedCrossRefGoogle Scholar
  106. Cragg, S.M. and Eaton, R.A. (1997). Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea. II. Effects on wood-degrading micro-organisms and fouling invertebrates. Mater. Organismen 31, 197–216.Google Scholar
  107. Creffield, J.W., Greaves, H., Chew, N., and Nguyen, N.K. (2000). A field trial of pigment-emulsion creosote: 11 year data. Forest Prod. J. 50, 77–82.Google Scholar
  108. Cui, W., Beever, R.E., Parkes, S.L., Weeds, P.L., and Templeton, M.D. (2002). An osmosensing histidine kinase mediators dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36, 187–198.PubMedCrossRefGoogle Scholar
  109. Cullen, D. (1997). Recent advances on the molecular genetics of ligninolytic fungi. J. Biotechnol. 53, 273–289.PubMedCrossRefGoogle Scholar
  110. Dalboge, H. (1997). Expression cloning of fungal enzyme genes; a novel approach for efficient isolation of enzyme genes of industrial interest. FEMS Microbiol. Rev. 21, 29–42.PubMedCrossRefGoogle Scholar
  111. D’Annibale, A., Celetti, D., Felici, M., DiMattia, E., and Sermanni, G.G. (1996). Substrate specificity of laccase from Lentinus edodes. Acta Biotechnol. 16, 257–270.CrossRefGoogle Scholar
  112. D’Annibale, A., Stazi, S.R., Vinciguerra, V., DiMattia, E., and Sermanni, G.G. (1999). Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem. 34, 697–706.CrossRefGoogle Scholar
  113. Das, N., Chakraborty, T.K., and Mukherjee, M. (2001). Purification and characterization of a growth-regulating laccase from Pleurotus florida. J. Basic Microbiol. 41, 261–267.PubMedCrossRefGoogle Scholar
  114. Datta, A., Bettermann, A., and Kirk, T.K. (1991). Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl. Environ. Microbiol. 57, 1453–1460.PubMedGoogle Scholar
  115. Datta, J., Dutta, T.K., and Samanta, T.B. (1994). Microsomal glutathione-S-transferase (GST) isoenzymes in Aspergillus ochraceus TS—induction by 3-methylcholanthrene. Biochem. Biophys. Res. Commun. 203, 1508–1514.PubMedCrossRefGoogle Scholar
  116. Davila, A.M., Marchai., R., and Vandecasteele, J.P. (1994). Sophorose lipid production from lipidie precursors— predictive evaluation of industrial substrates. J. Ind. Microbiol. 13, 249–257.CrossRefGoogle Scholar
  117. Davies, G. and Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859.PubMedCrossRefGoogle Scholar
  118. Davies, G.J., Wilson, K.S., and Henrissat, B. (2002). Nomenclature for sugar binding subsites in glycosyl hydrolases. Biochem. J. 321, 557–559.Google Scholar
  119. Davis, M.W., Glaser, J.A., Evans, J.W., and Lamar, R.T. (1993). Field-evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Technol. 27, 2572–2576.CrossRefGoogle Scholar
  120. Dec, J., Haider, K., and Bollag, J.M. (2001). Decarboxylation and demethoxylation of naturally occuring phenols during coupling reactions and polymerization. Soil Sci. 166, 660–671.CrossRefGoogle Scholar
  121. Dedeyan, B., Klonowska, A., Tagger, S., Tron, T., Iacazio, G., Gil, G., and Le Petit, J. (2000). Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl. Environ. Microbiol. 66, 925–929.PubMedCrossRefGoogle Scholar
  122. de Groot, R.C. and Woodward, B. (1998). Wolfiporia cocos—a potential agent for composting or bioprocessing Douglas-fir wood treated with copper-based preservatives. Mater. Organismen 32, 195–215.Google Scholar
  123. de Groot, R.C. and Woodward, B. (1999). Using copper-tolerant fungi to biodegrade wood treated with copperbased preservatives. Int. Biodeter. Biodegr. 44, 17–27.CrossRefGoogle Scholar
  124. Dekker, J. (1995). Development of resistance to modern fungicide and strategies for its avoidance. In H. Lyr (ed.) Modern selective fungicides (2nd edn.). Fischer, Jena, pp. 23–38.Google Scholar
  125. Dekker, J. and Georgopoulos, S.G. (eds.) (1982). Fungicide resistance in crop protection. Pudoc, Wageningen.Google Scholar
  126. Dekker, R.F.H., Vasconcelos, A.F.D., Barbosa, A.M., Giese, E.C., and Paccola-Meirelles, L. (2001). A new role for veratryl alcohol: Regulation of synthesis of lignocellulose-degrading enzymes in the ligninolytic ascomycetous fungus, Botryosphaeria sp.; influence of carbon source. Biotechnol. Lett. 23, 1987–1993.CrossRefGoogle Scholar
  127. del Sorbo, G., Schoonbeek, H., and de Waard, M.A. (2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet. Biol. 30, 1–15.PubMedCrossRefGoogle Scholar
  128. de Marco, A. and RoubelakisAngelakis, K.A. (1997). Laccase activity could contribute to cell-wall reconstitution in regeneration protoplasts. Phytochemistry 46, 421–425.CrossRefGoogle Scholar
  129. Demain, A.L. (2000). Microbial biotechnology. Trends Biotechnol. 18, 26–31.PubMedCrossRefGoogle Scholar
  130. de Vries, R.P. and Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522.PubMedCrossRefGoogle Scholar
  131. Dietrich, D., Hickey, W.J., and Lamar, R. (1995). Degradation of 4,4′-dichlorobiphenyl, 3,3′,4,4′-tetrachloro-biphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 3904–3909.PubMedGoogle Scholar
  132. Dixon, D.P., Cole, D.J., and Edwards, R. (2000). Characterisation of a zeta class gluthatione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384, 407–412.PubMedCrossRefGoogle Scholar
  133. Dmochewitz, S. and Ballschmiter, K. (1988). Microbial transformation of technical mixtures of polychlorinated biphenyls (PCB) by the fungus Aspergillus niger. Chemosphere 17, 111–121.CrossRefGoogle Scholar
  134. Dodge, R.H., Cerniglia, C.E., and Gibson, D.T. (1979). Fungal metabolism of biphenyl. Biochem. J. 178, 223–230.PubMedGoogle Scholar
  135. Donnelly, P.K. and Fletcher, J.S. (1994). Potential use of mycorrhizal fungi as bioremediation agents. ACS Symp. Ser. 563, 93–99.CrossRefGoogle Scholar
  136. Donnelly, P.K., Entry, J.A., and Crawford, D.L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at 3 nitrogen concentrations in-vitro. Appl. Environ. Microbiol. 59, 2642–2647.PubMedGoogle Scholar
  137. Dordick, J.S., Ryu, K., and McEldoon, J.P (1991). Enzymatic cytalysis on coal-related compounds in organic media—kinetics and potential commercial applications. Res. Conserv. Recycl. 5, 195–209.CrossRefGoogle Scholar
  138. Ducros, V., Davies, G.J., Lawson, D.M., Wilson, K.S., Brwon, S.H., Ostergaard, P., Pedersen, A.H., Schneider, P. et al. (1997). Crystallization and preliminary X-ray analysis of the laccase from Coprinus cinereus. Acta Crystallogr. D — Biol. Crystallogr. 53, 605–607.PubMedCrossRefGoogle Scholar
  139. Duncan, C.G. and Deverall, F.J. (1964). Degradation of wood preservatives by fungi. Appl. Microbiol. 12, 57–68.PubMedGoogle Scholar
  140. Duran, N. and Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B — Environ. 28, 83–99.CrossRefGoogle Scholar
  141. Dvorakova, J. (1998). Phytase: Source, preparation and exploitation. Folia Microbiol. 43, 323–338.CrossRefGoogle Scholar
  142. Eaton, D.C. (1985). Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium, a ligninolytic fungus. Enzyme Microb. Technol. 7, 194–196.Google Scholar
  143. Eggen, T. (1999). Application of fungal substrate from commercial mushroom production—Pleurotus ostreatus—for bioremediation of creosote contamined soil. Int. Biodeter. Biodegr. 44, 117–126.CrossRefGoogle Scholar
  144. Eggen, T. and Sveum, P. (1999). Decontamination of aged creosote polluted soil: The influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment. Int. Biodeter. Biodegr. 43, 125–133.CrossRefGoogle Scholar
  145. Eggert, C., Lafayette, PR., Temp, U., Eriksson, K.-E.L., and Dean, J.ED. (1998). Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 64, 1766–1772.PubMedGoogle Scholar
  146. Eggert, C., Temp, U., and Eriksson, K.-E.L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151–1158.PubMedGoogle Scholar
  147. Eggert, C., Temp, U., and Eriksson, K.-E.L. (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407, 89–92.PubMedCrossRefGoogle Scholar
  148. Elisashvili, V.I. (1993). Physiological regulation of ligninolytic activity in higher basidium fungi. Microbiology 62, 480–487.Google Scholar
  149. Emtiazi, G., Satarii, M., and Mazaherion, F. (2001). The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Res. 35, 1219–1224.PubMedCrossRefGoogle Scholar
  150. Endo, K., Hosono, K., Beppu, T., and Ueda, K. (2002). A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis. Microbiology 148, 1767–1776.PubMedGoogle Scholar
  151. Entry, J.A., Donnelly, P.K., and Emmingham, W.H. (1996). Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darken. Appl. Soil Ecol. 3, 85–90.CrossRefGoogle Scholar
  152. Fabbrini, M., Galli, C., and Gentili, P. (2002). Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal. B— Enzym. 16, 231–240.CrossRefGoogle Scholar
  153. Fahr, K., Wetzstein, H.G., Grey, R., and Schlosser, D. (1999). Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol. Lett. 175, 127–132.PubMedCrossRefGoogle Scholar
  154. Fahreus, G. and Ljundgreen, H. (1961). Substrate specificity of purified fungal laccase. Biochim. Biophys. Acta 46, 22–32.CrossRefGoogle Scholar
  155. Fakoussa, R.M. and Frost, P.J. (1999). In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 52, 60–65.CrossRefGoogle Scholar
  156. Fakoussa, R.M. and Hofrichter, M. (1999). Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52, 25–4PubMedCrossRefGoogle Scholar
  157. Farnet, A.M., Tagger, S., and Le Petit, J. (1999). Effects of copper and aromatic inducers on the laccases of the white-rot fungus Marasmius quercophilus. CR Acad. Sci. III-VIE 322, 499–503.Google Scholar
  158. Faure, D., Bouillant, M.L., and Bally, R. (1995). Comparative-study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia-oryzae laccases. Appl. Environ. Microbiol. 61, 1144–1146.PubMedGoogle Scholar
  159. Faure, D., Bouillant, M.L., Jacoud, C., and Bally, R. (1996). Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry 42, 357–359.CrossRefGoogle Scholar
  160. Fernandez-Sanchez, J.M., Rodriguez-Vazquez, R., Ruiz-Aguilar, G., and Alvarez, P.J.J. (2001). PCB biodegradation in aged contaminated soil: Interactions between exogenous Phanerochaete chrysosporium and indigenous microorganisms. J. Environ. Sci. Health 36, 1145–1162.Google Scholar
  161. Field, J.A., de Jong, E., Costa, G.F., and de Bont, J.A.M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58, 2219–2226.PubMedGoogle Scholar
  162. Font, X., Caminal, G., Gabarrell, X., Lafuente, J., and Vicent, M.T. (1997). One-line enzyme activity determination using the stopped-flow technique: Application to laccase activity in pulp mill waste-water treatment. Appl. Microbiol. Biotechnol. 48, 168–173.CrossRefGoogle Scholar
  163. Fortnagel, P., Harms, H., Wittich, R.-M., Krohn, S., Meyer, H., and Francke, W. (1989). Cleavage of dibenzofuran and dibenzo-p-dioxin ring systems by a Pseudomonas bacterium. Naturwissenschaften 76, 222–223.PubMedCrossRefGoogle Scholar
  164. Freire, R.S., Duran, N., and Kubota, L.T. (2002a). Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft El paper mill effluent. Anal. Chim. Acta 463, 229–238.CrossRefGoogle Scholar
  165. Freire, R.S., Duran, N., Wang, J., and Kubota, L.T. (2002b). Laccase-based screen printed electrode for amperometric detection of phenolic compounds. Anal. Lett. 35, 29–38.CrossRefGoogle Scholar
  166. Fritz-Langhals, E. and Kunath, B. (1998). Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation. Tetrahedron Lett. 39, 5955–5956.CrossRefGoogle Scholar
  167. Frost, G.M. and Moss, D.A. (1987). Production of enzymes by fermentation. In J.F. Kennedy (ed.) Enzyme technology. VCH, Weinheim, pp. 65–211.Google Scholar
  168. Fu, Y.Z. and Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: A review. Biores. Technol. 79, 252–262.CrossRefGoogle Scholar
  169. Fujisawa, T., Onogawa, Y., Sato, A., Mitsuya, T., and Shimuzu, M. (1998). Asymmetric reductions of (trifluoroacetyl)biphenyl derivatives with bakers’ yeast and with Geotrichum candium acetone powder. Tetrahedron 54, 4267–4276.CrossRefGoogle Scholar
  170. Fukui, S. and Tanaka, A. (1981). Production of useful compounds from alkane media in Japan. In A. Fiechter (ed.) Products from alkanes, cellulose and other feedstocks. Akademie-Verlag, Berlin, pp. 1–35.Google Scholar
  171. Gaal, A. and Neujahr, H.Y. (1979). Metabolism of phenol and resorcinol in Trichosporon cutaneum. J. Bacteriol. 137, 13–21.PubMedGoogle Scholar
  172. Galante, Y.M., de Conti, A., and Montevedi, R. (1998). Application of Trichoderma enzymes in food and feed industries. In G.E. Hamnn and C. Kubicek (eds.) Trichoderma and Gliocladiumenzymes, biological control and commercial applications. Taylor & Francis, London, pp. 327–342.Google Scholar
  173. Galhaup, C., Goller, S., Peterbauer, C.K., Strauss, J., and Haltrich, D. (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148, 2159–2169.PubMedGoogle Scholar
  174. Gardiol, A.E., Hernandez, R.J., Reinhammer, B., and Harte, B.R. (1996). Development of a gas-phase oxygen biosensor using a blue copper-containing oxidase. Enzyme Microb. Technol. 18, 347–352.PubMedCrossRefGoogle Scholar
  175. Garg, S.K. and Modi, D.R. (1999). Decolorization of pulp-paper mill effluents by white-rot fungi. Crit. Rev. Biotechnol. 19, 85–112.CrossRefGoogle Scholar
  176. Gavnholt, B., Larsen, K., and Rasmussen, S.K. (2002). Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci. 162, 873–8CrossRefGoogle Scholar
  177. Georgopoulos, S.G. (1995). The genetics of fungicide resistance. In H. Lyr (ed.) Modern selective fungicides (2nd edn). Fischer, Jena, pp. 39–52.Google Scholar
  178. Gesell, M. (2001). Biotransformation von Biarylverbindungen durch Pilze der Gattungen Paecilomyces und Fusarium unter besonderer Berücksichtigung des Stammes Paecilomyces lilacinus. Doctoral dissertation, University of Greifswald.Google Scholar
  179. Gesell, M., Hammer, E., Specht, M., Francke, W., and Schauer, F. (2001). Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl. Environ. Microbiol. 67, 1551–1557.PubMedCrossRefGoogle Scholar
  180. Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13, 122–135.PubMedCrossRefGoogle Scholar
  181. Ghindilis, A.L., Gavrilova, V.P., and Yaropolov, A.I. (1992). Laccase-based biosensor for determination of polyphenols—determination of catechols in tea. Biosens. Bioelectron. 7, 127–131.PubMedCrossRefGoogle Scholar
  182. Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., Cennamo, G., and Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem. J. 341, 655–663.PubMedCrossRefGoogle Scholar
  183. Gibson, D.T. (1968). Microbial degradation of aromatic compounds. Science 161, 1093–1097.CrossRefGoogle Scholar
  184. Gill, M. and Steglich, W. (1987). Progress in the chemistry of organic natural products 51. Springer-Verlag, Wien.CrossRefGoogle Scholar
  185. Glenn, J.K., Akileswaran, L., and Gold, M.H. (1986). Mn (II) oxidation in the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysopsorium. Arch. Biochem. Biophys. 251, 688–696.PubMedCrossRefGoogle Scholar
  186. Gokmen, V., Borneman, Z., and Nijhuis, H.H. (1998). Improved ultrafiltration for color reduction and stabilization of apple juice. J. Food Sci. 63, 504–507.CrossRefGoogle Scholar
  187. Golbeck, J.H., Albaugh, S.A., and Radmer, R. (1983). Metabolism of biphenyl by Aspergillus toxicarius: Induction of hydroxylating activity and accumulation of water-soluble conjugates. J. Bacteriol. 156, 49–57.PubMedGoogle Scholar
  188. Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W. et al. (2001). Pigs expressing salivary phytase produce low-phosphorous manure. Nat. Biotechnol. 19, 741–745.PubMedCrossRefGoogle Scholar
  189. Golovleva, L.A., Leontievsky, A.A., Maltseva, O.V., and Myasoedova, N.M. (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8/18—biosynthesis, purification and properties. J. Biotechnol. 30, 71–77.CrossRefGoogle Scholar
  190. Gouka, R.J., Gerk, C., Hooykaas, P.J.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J.A. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 6, 598–601.CrossRefGoogle Scholar
  191. Gramss, G., Kirsche, B., Voigt, K.D., Günther, T., and Fritsche, W. (1999). Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol. Res. 103, 1009–1018.CrossRefGoogle Scholar
  192. Grass, G. and Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902–908.PubMedCrossRefGoogle Scholar
  193. Grassin, C. and Fauquembergue, P. (1996). Fruit juices. In S. West (ed.) Industrial enzymology. Macmillan Press, London, pp. 226–240.Google Scholar
  194. Green, N.A., Meharg, A.A., Till, C., Troke, J., and Nicholson, J.K. (1999). Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by F-19 nuclear magnetic resonance spectroscopy and 14C radiolabelling analysis. Appl. Environ. Microbiol. 65, 4021–4027.PubMedGoogle Scholar
  195. Gripenberg, J. (1960). Fungus pigments 12. The structure and synthesis of telephone acid. Tetrahedron 10, 135–143.CrossRefGoogle Scholar
  196. Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., and Kratky, C. (1998). Thermophilic xylanase fom Thermomyces lanuginosus: High resolution X-ray structure and modeling studies. Biochemistry 37, 13475–13485.PubMedCrossRefGoogle Scholar
  197. Günther, T., Sack, U., Hofrichter, M., and Latz, M. (1998). Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J. Basic Microbiol. 38, 113–122.CrossRefGoogle Scholar
  198. Ha, H.C., Honda, Y., Watanabe, T., and Kuwahara, M. (2001). Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl. Environ. Microbiol. 55, 704–711.Google Scholar
  199. Haemmerli, S.D., Leisola, M.S.A., Sanglard, D., and Fiechter, A. (1986). Oxidation of benzo[a]pyrene by extracellular ligninase of Phanerochaete chrysosporium. J. Biol. Chem. 261, 6900–6903.PubMedGoogle Scholar
  200. Hakala, T., Lundell, T., Hofrichter, M., and Maijala, P. (2002). Manganese peroxidase—the key enzyme in lignin biodegradation and biopulping by white-rot fungi? Abstr. Pap. Am. Chem. Soc. 223, 028-CELL Part1.Google Scholar
  201. Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., and Rouvinen, J. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat. Struct. Biol. 9, 601–605.PubMedGoogle Scholar
  202. Halsall, B.E., Darrah, J.A., and Cain, R.B. (1969). Regulation of enzymes of aromatic-ring fission in fungi— organisms using both catechol and protocatechuate pathways. Biochem. J. 114, P75.Google Scholar
  203. Hammel, K.E. and Tardone, P.J. (1988). The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27, 6563–6568.CrossRefGoogle Scholar
  204. Hammel, K.E., Kalyanaraman, B., and Kirk, T.K. (1986). Oxidation of polycyclic aromatic hydrocarbons and dibenzo-p-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 262, 16948–16952.Google Scholar
  205. Hammer, E., Krowas, D., Schäfer, A., Specht, M., Francke, W., and Schauer, F. (1998). Isolation and characterization of a dibenzofuran-degrading yeast: Identification of oxidation and ring cleavage products. Appl. Environ. Microbiol. 64, 2215–2219.PubMedGoogle Scholar
  206. Hammer, E. and Schauer, F. (1997). Fungal hydroxylation of dibenzofuran. Mycol. Res. 101, 433–436.CrossRefGoogle Scholar
  207. Hammer, E., Schoefer, L., Schäfer, A., Hundt, K., and Schauer, F. (2001). Formation of glucoside conjugates during biotransformation of dibenzofuran by Penicillium canescens SBUG-M 1139. Appl. Microbiol. Biotechnol. 57, 390–394.PubMedCrossRefGoogle Scholar
  208. Han, S. and New, P.B. (1994). Effect of water availability on degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by soil-microorganisms. Soil Biol. Biochem. 26, 1689–1697.CrossRefGoogle Scholar
  209. Hara, A., Ueda, M., Matsui, T., Arie, M., Saeki, H., Matsuda, H., Furuhashi, K., Kanai, T., et al. (2001). Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determination of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Appl. Microbiol. Biotechnol. 56, 478–485.PubMedCrossRefGoogle Scholar
  210. Harada, T. (1984). Isoamylase and its industrial significance in the production of sugars from starch, Biotechnol. Genet. Eng. 1. In G.E. Russel (ed.) Biotechnology and genetic engineering reviews Intercept, Newcastle Upon Tyne, pp. 39–63.Google Scholar
  211. Hargreaves, J., Park, J.O., Ghisalberti, EX., Sivasithamparam, K., Skelton, B.W., and White, A.H. (2002). New chlorinated diphenyl ethers from Aspergillus species. J. Nat. Prod. 65, 7–10.PubMedCrossRefGoogle Scholar
  212. Harkki, A., Uusitalo, J., Bailey, M., Penttila, M., and Knowles, J.K.C. (1989). A novel fungal expression system: Secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio-Technology 7, 596–603.Google Scholar
  213. Harris, G. and Ricketts, R.W. (1962). Metabolism of phenolic compounds by yeast. Nature 195, 473–474.CrossRefGoogle Scholar
  214. Harwood, C.S. and Parales, R.E. (1996). The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553–590.PubMedCrossRefGoogle Scholar
  215. Hatakka, A. (1994). Lignin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125–135.CrossRefGoogle Scholar
  216. Heldt-Hansen, H.P. (1997). Development of enzymes for food application. In K. Poutanen (ed.) Biotechnology in the food chain. New tools and applications for future foods Technical Research Centre of Finland, Espoo, Symposium 1998, Helsinki, pp. 45–55.Google Scholar
  217. Henning, K. (1993). Oxidation of diphenyl ether by the yeast Trichosporon beigelii (German). Doctoral dissertation, University of Greifswald.Google Scholar
  218. Henriksson, G., Johansson, G., and Petterson, G. (2000). A critical review of cellobiose dehydrogenases. J. Biotechnol. 78, 93–113.PubMedCrossRefGoogle Scholar
  219. Hess, J., Leitner, C., Galhaup, C., Kulbe, K.D., Hinterstoisser, B., Steinwender, M., and Haltrich, D. (2002). Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor. Appl. Biochem. Biotechnol. 98, 229–241.PubMedCrossRefGoogle Scholar
  220. Hiratsuka, N., Wariishi, H., and Tanaka, H. (2001). Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 57, 563–571.PubMedCrossRefGoogle Scholar
  221. Hoffmann, B. and Rehm, H.J. (1976). Degradation of long chain n-alkanes by Mucorales. Eur. J. Appl. Micobiol. 3, 19–30.CrossRefGoogle Scholar
  222. Hofmann, K.H. and Schauer, F. (1988). Utilization of phenol by hydrocarbon assimilating yeasts. Antonie van Leeuwenhoek 54, 179–188.PubMedCrossRefGoogle Scholar
  223. Hofrichter, M., Bublitz, F., and Fritsche, W. (1997). Fungal attack on coal II. Solubilization of low-rank coal by filamentous fungi. Fuel Proc. Technol. 52, 55–64.CrossRefGoogle Scholar
  224. Hofrichter, M. and Scheibner, K. (1993). Utilization of aromatic compounds by the Penicillium strain BI-7/2. J. Basic Microbiol. 33, 227–232.PubMedCrossRefGoogle Scholar
  225. Hofrichter, M., Scheibner, K., Schneegass, I., and Fritsche, W. (1998). Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 64, 399–404.PubMedGoogle Scholar
  226. Holker, U., Schmiers, H., Grosse, S., Winkelhofer, M., Polsakiewicz, M., Ludwig, S., Dohse, J., and Hofer, M. (2002). Solubilization of low-rank coal by Trichoderma atroviride: Evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J. Ind. Microbiol. Biotechnol. 28, 207–212.PubMedCrossRefGoogle Scholar
  227. Hommel, R., Stüwer, O., Stuber, W., Haferburg, D., and Kleber, H.-P. (1987). Production of water soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol. Biotechnol. 26, 199–205.CrossRefGoogle Scholar
  228. Hong, F., Meinander, N.Q., and Jonsson, L.J. (2002). Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.PubMedCrossRefGoogle Scholar
  229. Hood, E.E. (2002). From green plants to industrial enzymes. Enzyme Microb. Technol. 30, 279–283.CrossRefGoogle Scholar
  230. Hoshida, H., Nakao, M., Kanazawa, H., Kubo, K., Hakukawa, K., Morimasa, K., Akada, R., and Nishizawa, Y. (2001). Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J. Biosci. Bioeng. 92, 372–380.PubMedGoogle Scholar
  231. Hrazdina, G., Borejsza-Wysocki, W., and Lester, C. (1997). Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathology 87, 868–876.PubMedCrossRefGoogle Scholar
  232. Huang, M.H., Shih, Y.P, and Liu, S.M. (2002). Biodegradation of polyvinyl alcohol by Phanerochaete chrysosporium after pretreatment with Fenton’s reagent. J. Environ. Sci. Health A — Toxic/Hazardous Substances Environ. Eng. 37, 29–41.CrossRefGoogle Scholar
  233. Huber, J. (1994). Production of microbial enzyme preparations: Biology and biochemistry. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 193–244.Google Scholar
  234. Hullo, M.F., Moszer, I., Danchin, A., and Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430.PubMedCrossRefGoogle Scholar
  235. Humar, M., Petric, M., Pohleven, F., Sentjurc, M., and Kalan, P. (2002). Changes in EPR spectra of wood impregnated with copper-based preservatives during exposure to several wood-rotting fungi. Holzforschung 56, 229–238.CrossRefGoogle Scholar
  236. Hundt, K.F. (2001). Biotransformation von halogenierten Diphenylethern durch Pilze unter besonderer Berücksichtigung von Trametes versicolor. Doctoral dissertation, University of Greifswald.Google Scholar
  237. Hundt, K., Jonas, U., Hammer, E., and Schauer, F. (1999). Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10, 279–286.CrossRefGoogle Scholar
  238. Hundt, K., Martin, D., Hammer, E., Jonas, U., Kindermann, M.K., and Schauer, F. (2000). Transformation of Triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 66, 4157–4160.PubMedCrossRefGoogle Scholar
  239. Hutzinger, O. and Blumich, M.J. (1985). Sources and fate of PCDDs and PCDFs: An overview. Chemosphere 14, 581–600.CrossRefGoogle Scholar
  240. Ichinose, H., Wariishi, H., and Tanaka, H. (1999). Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol. Progr. 15, 706–714.CrossRefGoogle Scholar
  241. Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., and Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth promoting effect. Microbiology 148, 2097–2109.PubMedGoogle Scholar
  242. Iida, M., Kobayashi, H., and Iizuka, H. (1980). Cellular fatty acids derived from normal alkanes by Candida rugosa. Z. Allg. Mikrobiol. 20, 449–457.PubMedCrossRefGoogle Scholar
  243. Ikeda, R., Sugita, T., Jacobson, E.S., and Shinoda, T. (2002). Laccase and melanization in clinically important Cryptococcus species other than Cryptococcus neoformans. J. Clin. Microbiol. 40, 1214–1218.PubMedCrossRefGoogle Scholar
  244. Inomata, N., Yosgida, H., Aoki, A., Tsunoda, M., and Yamamoto, M. (1991). Effects of MCPA and other phenoxyacid compounds on hepatic xenobiotic metabolism in rats. Tohoku J. Exp. Med. 165, 171–182.PubMedCrossRefGoogle Scholar
  245. Inoue, S. and Itoh, S. (1982). Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol. Lett. 4, 3–8.CrossRefGoogle Scholar
  246. Irvin, G.C.J. and Cosgrove, D.J.J. (1972). Inositol phosphate phosphatases of microbiological origin: The inositol pentaphosphate products of Aspergillus ficuum phytases. J. Bacteriol. 112, 434–438.Google Scholar
  247. Ishiguro, T., Ohtake, Y., Nakayama, S., Inamori, Y., Amagai, T., Soma, M., and Matsusita, H. (2000). Biodegradation of dibenzofuran and dioxins by Pseudomonas aeruginosa and Xanthomonas maltophilia. Environ. Technol. 21, 1309–1316.Google Scholar
  248. Ito, K., Ikemasu, T., and Ishikawa, T. (1992). Cloning and sequencing of the xynA-gene encoding xylanase A of Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 906–912.PubMedCrossRefGoogle Scholar
  249. Iwatsuki, M., Niki, E., and Kato, S. (1993). Antioxidant activities of natural and synthetic carbazoles. Biofactors 4, 123–128.PubMedGoogle Scholar
  250. Jaeger, K.E. and Eggert, T. (2002). Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397.PubMedCrossRefGoogle Scholar
  251. Jaeger, K.-E. and Reetz, M. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396–403.PubMedCrossRefGoogle Scholar
  252. Jin, L.Z., Tran, D.Q., Ide, C.F., McLachlan, J.A., and Arnold, S.F. (1997). Several synthetic chemicals inhibit progesterone receptor-mediated transactivation in yeast. Biochem. Biophys. Res. Commun. 233, 139–146.PubMedCrossRefGoogle Scholar
  253. Johannes, C. and Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524–528.PubMedCrossRefGoogle Scholar
  254. Johannes, C., Majcherczyk, A., and Hüttermann, A. (1998). Oxidation of acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotechnol. 61, 151–156.CrossRefGoogle Scholar
  255. Jonas, U. (1997). Biotransformation von Biarylverbindungen durch Weißfäulepilze unter besonderer Berücksichtigung des ligninolytischen Enzymsystems von Pycnoporus cinnabarinus und Trametes versicolor. Doctoral dissertation, University of Greifswald.Google Scholar
  256. Jonas, U., Hammer, E., Haupt, E.T.K., and Schauer, F. (2000). Characterisation of coupling products formed by biotansformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus. Arch. Microbiol. 174, 393–398.PubMedCrossRefGoogle Scholar
  257. Jonas, U., Hammer, E., Schauer, F., and Bollag, J.-M. (1998). Transformation of 2-hydroxydibenzofuran by laccases of white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation 8, 321–328.CrossRefGoogle Scholar
  258. Jones, K.H., Trudgill, P.W., and Hopper, D.J. (1993). Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 59, 1125–1130.PubMedGoogle Scholar
  259. Jonsson, L.J., Saloheimo, M., and Penttila, M. (1997). Laccase from the white-rot fungus Trametes versicolor. cDNA cloning of Icc1 and expression in Pichia pastoris. Curr. Gen. 32, 425–430.CrossRefGoogle Scholar
  260. Joo, H., Lin, Z., and Arnold, F.H. (1999). Laboratory evolution of peroxide-mediated cytochrome P450 hydroxlation. Nature 399, 670–673.PubMedCrossRefGoogle Scholar
  261. Juhasz, A.L. and Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegr. 45, 57–88.CrossRefGoogle Scholar
  262. Jung, H.C., Xu, F., and Li, K.C. (2002). Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme Microb. Technol. 30, 161–168.CrossRefGoogle Scholar
  263. Kaneyuki, H., Deno, H., Hiratsuka, J., Matsuyoshi, T., and Furukawa, T. (1980). Production of sebacic acid from n-decane by mutants derived from Torulopsis candida. J. Ferment. Technol. 58, 405–410.Google Scholar
  264. Kahraman, S. and Yesilada, O. (2001). Industrial and agricultural wastes as substrates for laccase production by white-rot fungi. Folia Microbiol. 46, 133–136.CrossRefGoogle Scholar
  265. Karam, J. and Nicell, J.A. (1997). Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol. 69, 141–153.CrossRefGoogle Scholar
  266. Kärenlampi, S.O. and Hynninen, PH. (1981). Formation of benzoic acid from biphenyl in the yeast Saccharomyces cerevisiae. Chemosphere 10, 391–396.CrossRefGoogle Scholar
  267. Kartal, S.N. and Clausen, C.A. (2001). Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood. Int. Biodeter. Biodegr. 47, 183–191.CrossRefGoogle Scholar
  268. Kato, S., Kawasaki, T., Urata, T., and Mochizuku, J. (1993). In vitro and ex vivo free radical scavenging activities of carazostatin, carbazomycin B and their derivatives. J. Antibiot. (Tokyo) 46, 1859–1865.CrossRefGoogle Scholar
  269. Keitel, T., Simon, O., Borriss, R., and Heinemann, U. (1993). Molecular and active-site structure of a Bacillus 1,3-1,4-ß-glucanase. Proc. Natl. Acad. Sci. U.S.A. 90, 5287–5291.PubMedCrossRefGoogle Scholar
  270. Kennes, C. and Lema, J.M. (1994). Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium. J. Ind. Microbiol. 13, 311–314.PubMedCrossRefGoogle Scholar
  271. Kim, H.S., Yoon, B.D., Choung, D.H., Oh, H.M., Katsuragi, T., and Tani, Y. (1999). Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp SY16. Appl. Microbiol. Biotechnol. 52, 713–721.PubMedCrossRefGoogle Scholar
  272. Kim, S., Leem, Y., Kim, K., and Choi, H.T. (2001). Cloning of an acidic laccase gene (clac2) from Coprinus congregatus and its expression by external pH. FEMS Microbiol. Lett. 195, 151–156.PubMedCrossRefGoogle Scholar
  273. Kirk, T.K. and Farrell, R.L. (1987). Enzymatic combustion—the microbial-degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.PubMedCrossRefGoogle Scholar
  274. Klug, M.J. and Markovetz, A.J. (1967). Degradation of hydrocarbons by members of the genus Candida. Appl. Microbiol. 15, 690–693.PubMedGoogle Scholar
  275. Ko, E.M., Leem, Y.E., and Choi, H.T. (2001). Purification and characterization of laccase from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol. 57, 98–102.PubMedCrossRefGoogle Scholar
  276. Kobayashi, S. and Uyama, H. (1998). Enzymatic polymerization for synthesis of polyester and polyaromatics. Enzymes Polym. Synth. ACS Symp. Ser. 684, 58–73.Google Scholar
  277. Kocwahaluch, R. (1995). Easy and inexpensive diffusion tests for detecting the assimilation of aromatic-compounds by yeast-like fungi. 1. Assimilation of dihydroxyphenols. Chemosphere 30, 209–213.CrossRefGoogle Scholar
  278. Kokubun, T. and Harborne, J.B. (1995). Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae)—biphenyls or dibenzofurans. Phytochemistry 40, 1649–1654.CrossRefGoogle Scholar
  279. Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995a). Antifungal biphenyl compounds are the phytoalexins of the sapwood of Sorbus aucuparia. Phytochemistry 40, 57–59.CrossRefGoogle Scholar
  280. Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995b). Dibenzofuran phytoalexins from the sapwood of Cotoneaster acutifolius and 5 related species. Phytochemistry 38, 57–60.CrossRefGoogle Scholar
  281. Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995c). Dibenzofuran phytoalexins from the sapwood tissue of Photinia, Puracantha and Crataegus species. Phytochemistry 39, 1033–1037.CrossRefGoogle Scholar
  282. Kokubun, T., Harborne, J.B:, Eagles, J., and Waterman, P.G. (1995d). 4-dibenzofuran phytoalexins from the sapwood of Mespilus germanica. Phytochemistry 39, 1039–1042.CrossRefGoogle Scholar
  283. Komagata, K., Nakase, T., and Katsuya, N. (1964). Assimilation of hydrocarbons by yeast. I. Preliminary screening. J. Gen. Appl. Microbiol. 10, 313–321.CrossRefGoogle Scholar
  284. Kon, Y., Iwashina, T., Kashiwadini, H., and Wardlaw, J.H. (1997a). A new benzofuran, isostreptsilic acid, produced by cultured mycobiont of the Usnea orientalis. J. Jpn. Botany 72, 67–71.Google Scholar
  285. Kon, Y., Kashiwadani, H., Wardlaw, J.H., and Elix, J.A. (1997b). Effects of culture conditions on dibenzofuran production by cultured mycobionts of lichens. Symbiosis 23, 97–106.Google Scholar
  286. Kostrewa, D., Gruninger-Leitch, F., D’Arcy, A., Broger, C., Mitchell, D.B., and van Loon, A.P.G.M. (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat. Struct. Biol. 4, 185–190.PubMedCrossRefGoogle Scholar
  287. Krauel, H. and Weide, H. (1978). Dicarbonsäurebildung durch Candida guilliermondii, Stamm H17, beim Abbau von n-Tridecan in Batch-Kultur. Z. Allg. Mikrobiol. 18, 47–54.CrossRefGoogle Scholar
  288. Kraus, J.J., Munir, LZ., McEldoon, J.P., Clark, D.S., and Dordick, J.S. (1999). Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase. Appl. Biochem. Biotechnol. 80, 221–230.CrossRefGoogle Scholar
  289. Krcmar, P. and Ulrich, R. (1998). Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol. 43, 79–84.CrossRefGoogle Scholar
  290. Krcmar, P., Kubatova, A., Votruba, L, Erbanova, P., Novotny, C., and Sasek, V. (1999). Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J. Microbiol. Biotechnol. 15, 269–276.CrossRefGoogle Scholar
  291. Krivobok, S., Benoit-Guyod, J.L., Seigle-Murandi, F., Steiman, R., and Thiault, G.A. (1994). Diversity in phenolmetabolizing capability of 809 strains of micromycetes. Microbiologica 17, 51–60.PubMedGoogle Scholar
  292. Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., and Sasek, V. (2001). PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43, 207–215.PubMedCrossRefGoogle Scholar
  293. Kulkarni, N., Shendye, A., and Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23,411–456.PubMedCrossRefGoogle Scholar
  294. Kwon, S.I. and Anderson, A.J. (2002). Genes for multicopper proteins and laccase activity: Common features in plant-associated Fusarium isolates. Can. J. Botany 80, 563–570.CrossRefGoogle Scholar
  295. Lamar, R.T., Evans, J.W., and Glaser, J.A. (1993). Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ. Sci. Technol. 27, 2566–2571.CrossRefGoogle Scholar
  296. Lamar, R.T., Glase, J.A., and Kirk, T.K. (1990). Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: Mineralization, voletilization and depletion of PCP. Soil Biol. Biochem. 22, 433–440.CrossRefGoogle Scholar
  297. Landi, S. (2000). Mammalian class theta GST and differential susceptibility to carcinogens: A review. Mut. Res. — Rev. Mut. Res. 463, 247–283.CrossRefGoogle Scholar
  298. Lang, E., Gonser, A., and Zadrazil, F. (2000). Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp and Dichomitus squalens. J. Basic Microbiol. 40, 33–39.PubMedCrossRefGoogle Scholar
  299. Lange, J., Hammer, E., Specht, M., Francke, W., and Schauer, F. (1998). Biotransformation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl. Microbiol. Biotechnol. 50, 364–368.PubMedCrossRefGoogle Scholar
  300. Lassen, S.F, Breinholti, J., Fuglsang, C.C., Ohmann, A., and Stergaard, PR. (2000). Peniophora phytase. World Patent WO9828408.Google Scholar
  301. Lassen, S.F., Breinholti, J., Ostergaard, PR., Brugger, R., Bischoff, A., Wyss, M., and Fuglsang, C.C. (2001). Expression, gene cloning and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 67, 4701–4707.PubMedCrossRefGoogle Scholar
  302. Laugero, C., Mougin, C., Sigoillot, J.C., Moukha, S., and Asther, M. (1997). Comparison of static and agitated immobilized cultures of Phanerochaete chrysosporium for the degradation of pentachlorophenol and its metabolite pentachloroanisole. Can. J. Microbiol. 43, 378–383.CrossRefGoogle Scholar
  303. Layton, A.C., Sanseverino, J., Gregory, B.W., Easter, J.P., Sayler, G.S., and Schultz, T.W. (2002). In vitro estrogen receptor binding of PCBs: Measured activity and detection of hydroxylated metabolites in a recombinant yeast assay. Toxicol. Appl. Pharmacol. 180, 157–163.PubMedCrossRefGoogle Scholar
  304. Lebeault, J.-M., Lode, E.T., and Coon, M. (1971). Fatty acid and hydrocarbon hydroxylation in yeast. Role of cytochrome P-450 in Candida tropicalis. Biochem. Biophys. Res. Commun. 42, 413–419.PubMedCrossRefGoogle Scholar
  305. Lee, D.H., Takahashi, M., and Tsunoda, K. (1992). Fungal detoxification of organoiodine wood preservatives. 2. Fungal metabolism in the decomposition of the chemicals. Holzforschung 46, 467–469.CrossRefGoogle Scholar
  306. Legendre, D., Soumillon, P., and Fastrez, J. (1999). Engineering a regulatable enzyme for homogenous immunoassays. Nat. Biotechnol. 17, 67–72.PubMedCrossRefGoogle Scholar
  307. Lehman, L.R. and Stewart, J.D. (2001). Filamentous fungi: Potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr. Org. Chem. 5, 439–470.CrossRefGoogle Scholar
  308. Lehmann, M., Kostrewa, D, Wyss, M., Brugger, R., D’Arcy, A., Pasamontes, L., and van Loon, A.P.G.M. (2000a). From DNA sequence to improved functionality: Using protein squence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57.PubMedCrossRefGoogle Scholar
  309. Lehmann, M., Lopez-Ulibarri, R., Loch, C., Viarouge, C., Wyss, M., and van Loon, A.P.G.M. (2000b). Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9, 1866–1872.PubMedCrossRefGoogle Scholar
  310. Lenin, L., Forchiassin, F., and Ramos, A.M. (2002). Copper induction of lignin-modifying enzymes in the whiterot fungus Trametes trogii. Mycologia 94, 377–383.CrossRefGoogle Scholar
  311. Leonowicz, A., Cho, N.S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. et al. (2001). Fungal laccase: Properties and activity on lignin. J. Basic Microbiol. 41, 185–227.PubMedCrossRefGoogle Scholar
  312. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.S., Hofrichter, M., and Rogalski, J. (1999). Biodegradation of lignin by white-rot fungi. Fungal Genet. Biol. 27, 175–185.PubMedCrossRefGoogle Scholar
  313. Leonowicz, A., Trojanow, J., and Nowak, G. (1972). Ferulic acid as inductor of messenger-RNA synthesis related to laccase formation in wood rotting fungus Pleurotus ostreatus. Microbios 6, 23–31.PubMedGoogle Scholar
  314. Leontievsky, A., Myasoedova, N., Pozdnyakova, N., and Golovleva, L. (1997). “Yellow” laccase of Panus trigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett. 413, 446–448.PubMedCrossRefGoogle Scholar
  315. Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Evans, C.S., and Golovleva, L.A. (2000). Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation 11, 331–340.PubMedCrossRefGoogle Scholar
  316. Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Golovleva, L.A., Bucke, C., and Evans, C.S. (2001). Transformation of 2,4,6-trichlorphenol by free and immobilized fungal laccase. Appl. Microbiol. Biotechnol. 57, 85–91.PubMedCrossRefGoogle Scholar
  317. Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Pozdnyakova, N.N., Vares, T., Kalkkinen, N., Hatakka, A.I., and Golovleva, L.A. (1999). Reactions of blue and yellow fungal laccases with lignin model compounds. Biochemistry 64, 1150–1156.PubMedGoogle Scholar
  318. Lesage-Meessen, G., Delattre, M., Haon, M., Thibault, J.F., Ceccaldi, B.C., Brunerie, P., and Asther, M. (1996). A two-step conversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 50, 107–113.PubMedCrossRefGoogle Scholar
  319. Levin, L. and Forchiassin, F. (2001). Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol. 21, 179–1CrossRefGoogle Scholar
  320. Lewis, D.F.V. (1996). Cytochromes P450. Structure, Function and Mechanism. Taylor & Francis, London.Google Scholar
  321. Li, K., Xu, F., and Eriksson, K.-E.L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 65, 2654–2660.PubMedGoogle Scholar
  322. Lindequist, U. and Schauer, F. (2002). Bioactive natural compounds—new possibilities for their derivatization. Screening 3, 48–49.Google Scholar
  323. Liu, H.L., Doleyres, Y., Coutinho, P.M., Ford, C., and Reilly, P.J. (2000). Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Protein Eng. 13, 655–659.PubMedCrossRefGoogle Scholar
  324. Liu, L., Tewari, R.P., and Williamson, PR. (1999). Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect. Immun. 67, 6034–6039.PubMedGoogle Scholar
  325. Loewus, F.A. and Murthy, P.P.N. (2000). Myo-inositol metabolism in plants. Plant Sci. 150, 1–19.CrossRefGoogle Scholar
  326. Logan, B.E., Alleman, B.C., Amy, G.L., and Gilbertson, R.L. (1994). Adsorption and removal of pentachlorophenol by white-rot fungi in batch cultures. Water Res. 28, 1533–1538.CrossRefGoogle Scholar
  327. Lottermoser, K., Schunck, W.-H., and Asperger, O. (1996). Cytochromes P450 of the sophorose lipid-producing yeast Candida apicola: Heterogeneity and polymerase chain reaction-mediated cloning of two genes. Yeast 12, 565–575.PubMedCrossRefGoogle Scholar
  328. Lottmann, J., Hammer, E., and Schauer, F. (1999). Methyl ketone formation during degradation of phenoxybutyric acid by Penicillium canescens SBUG-M 1139. Arch. Microbiol. 172, 417–420.PubMedCrossRefGoogle Scholar
  329. Lucas-Elio, P., Solano, F., and Sanchez-Amat, A. (2002). Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology 148, 2457–2466.PubMedGoogle Scholar
  330. Maheshwari, R., Bharadwaj, G., and Bhat, M.K. (2000). Thermophilic fungi: Their physiology and enzymes. Microbiol Mol. Biol. Rev. 64, 461–476.PubMedCrossRefGoogle Scholar
  331. Mai, C., Schormann, W., and Hüttermann, A. (2001a). The effect of ions on the enzymatic induced synthesis of lignin graft copolymers. Enzyme Microb. Technol. 28, 460–466.PubMedCrossRefGoogle Scholar
  332. Mai, C., Schormann, W., and Hiittermann, A. (2001b). Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds. Appl. Microbiol. Biotechnol. 55, 177–186.PubMedCrossRefGoogle Scholar
  333. Majcherczyk, A., Johannes, C., and Hiittermann, A. (1999). Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by 2,2′-azino-bis-(3-ethyl-benzothiazoline-6-sulphonic acid) cation radical and dication. Appl. Microbiol. Biotechnol. 51, 267–276.CrossRefGoogle Scholar
  334. Mansur, M., Suarez, T., Fernandez-Larrea, J.B., Brizuela, M.A., and Gonzalez, A.E. (1997). Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl. Environ. Microbiol. 63, 2637–2646.PubMedGoogle Scholar
  335. Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277, 18849–18859.PubMedCrossRefGoogle Scholar
  336. Maspahy, S., Lamb, D.C., and Kelly, S.L. (1999). Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem. Biophys. Res. Commun. 266, 326–329.PubMedCrossRefGoogle Scholar
  337. May, O., Nguyen, P.T., and Arnold, F.H. (2000). Inverting enantioselectivity and increasing total activity of a key enzyme in a multi-enzyme synthesis creates a viable process for production of L-methionine. Nat. Biotechnol. 18, 317–320.PubMedCrossRefGoogle Scholar
  338. Mayer, A.F., Hellmuth, K., Schlieker, H., Lopez-Ulibarri, R., Oertel, S., Dahlems, U., Strasser, A.W.M., and van Loon, A.P.G.M. (1999). An expression system matures: A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63, 373–381.PubMedCrossRefGoogle Scholar
  339. McAllister, K.A., Lee, H., and Trevors, J.T. (1996). Microbial degradation of pentachlorophenol. Biodegradation 7, 1–40.CrossRefGoogle Scholar
  340. McFadden, D.C. and Casadevall, A. (2001). Capsule and melanin synthesis in Cryptococcus neoformans. Med. Mycol. 39(Suppl. 1), 10–30.Google Scholar
  341. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I.M., Marchant, R. et al. (2001). Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56, 81–87.PubMedCrossRefGoogle Scholar
  342. Mester, T. and Tien, M. (2000). Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeter. Biodegr. 46, 51–59 (Sp. Issue).CrossRefGoogle Scholar
  343. Michailides, T.J. and Spotts, R.A. (1991). Effects of certain herbicides on the fate of sporangiospores of Mucor piriformis and conidia of Botrytis cinerea and Penicillium expansum. Pesticide Sci. 33, 11–22.CrossRefGoogle Scholar
  344. Michizoe, J., Goto, M., and Furusaki, S. (2001). Catalytic activity of laccase hosted in reversed micelles. J. Biosci. Bioeng. 92, 67–71.PubMedGoogle Scholar
  345. Middelhoven, W.J. (1993). Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi—a literature-review and an experimental approach. Antonie van Leeuwenhoek 63, 125–144.PubMedCrossRefGoogle Scholar
  346. Mielgo, I., Moreira, M.T., Feijoo, G., and Lema, J.M. (2002). Biodegradation of a polymeric dye in a pulsed bed reactor by immobilised Phanerochaete chrysosporium. Water Res. 36, 1896–1901.PubMedCrossRefGoogle Scholar
  347. Mikami, Y., Sakamoto, T., Yazawa, K., Gonoi, T., Ueno, Y., and Hasegawa, S. (1994). Comparison of in vitro antifungal activity of itraconazole and hydroxy-itraconazole by colorimetric MTT assay. Mycoses 37, 27–33.PubMedCrossRefGoogle Scholar
  348. Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A., and Schauer, F. (2002). Synthesis of 3-(3,4-dihydroxy-phenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron 58, 7598–7593.CrossRefGoogle Scholar
  349. Milewski, G.J., Bumpus, J.A., Jurek, M.A., and Aust, S.D. (1988). Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 2885–2888.Google Scholar
  350. Min, K.L., Kim, Y.H., Kim, Y.W., Jung, H.S., and Hah, Y.C. (2001). Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392, 279–286.PubMedCrossRefGoogle Scholar
  351. Mitchell, D.B., Vogel, K., Weimann, J., Pasamontes, L., and van Loon, A.P.G.M. (1997). The phytase subfamily of histidine acid phosphatases; isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143, 247–252.Google Scholar
  352. Miyagawa, H., Hamada, N., Sato, M., and Ueno, T. (1993). Hypostrepsilic acid, a new dibenzofuran from the cultured lichen mycobiont of Evernia esorodia. Phytochemistry 34, 589–591.CrossRefGoogle Scholar
  353. Miyazaki, K., Wintrode, P.L., Grayling, R.A., Rubingh, D.N., and Arnold, F.H. (2000). Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297, 1015–1026.PubMedCrossRefGoogle Scholar
  354. Mobley, D.P., Finkbeiner, H.L., Lockwood, S.H., and Spivack, J. (1993). Synthesis of 3-aryl muconolactones using biphenyl metabolism in Aspergillus. Tetrahedron 49, 3273–3280.CrossRefGoogle Scholar
  355. Molina, S.M.G., Pelissari, F.A., and Vitorello, C.B.M. (2001). Screening and genetic improvement of pectinolytic fungi for degumming of textile fibers. Braz. J. Microbiol. 32, 320–326.CrossRefGoogle Scholar
  356. Mollapour, M. and Piper, P.W. (2001). The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol. Microbiol. 42, 919–930.PubMedCrossRefGoogle Scholar
  357. Mori, M., Aoyama, M., and Doi, S. (1997). Antifiingal constituents in the bark of Magnolia obovata Thunb. Holz Roh. Werkst. 55, 275–278.CrossRefGoogle Scholar
  358. Morschhäuser, J. (2002). The genetic basis of fluconazole resistance development in Candida albicans. Biochim. Biophys. Acta 18, 240–248.Google Scholar
  359. Mougin, C., Kollmann, A., and Jolivalt, C. (2002). Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnol. Lett. 24, 139–142.CrossRefGoogle Scholar
  360. Mukherje, S.K. and Majumdar, S.K. (1971). Fermentative production of pectinases by fungi—screening of organisms and production of enzymes by Aspergillus niger. J. Ferment. Technol. 49, 759–761.Google Scholar
  361. Muyima, N.Y.O., Zulu, G., Bhengu, T., and Popplewell, D. (2002). The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Frag. J. 17, 258–266.CrossRefGoogle Scholar
  362. Nakamura, Y., Sungusia, M.G., Sawada, T., and Kuwahara, M. (1999). Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J. Biosci. Bioeng. 88, 41–47.PubMedCrossRefGoogle Scholar
  363. Nawas, T. and Alkofahi, A. (1994). Microbial contamination and preservative efficacy of topical creams. J. Clin. Pharm. then 19, 41–46.CrossRefGoogle Scholar
  364. Nerud, F. and Misurcova, Z. (1996). Distribution of lignonolytic enzymes in selected white-rot fungi. Folia Microbiol. 41, 264–266.CrossRefGoogle Scholar
  365. Neujahr, H.Y. and Varga, J.M. (1970). Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur. J. Biochem. 13, 37–44.PubMedCrossRefGoogle Scholar
  366. Niku-Paavola, M.L., Karhunen, E., Kantelinen, A., Viikari, L., Lundell, T., and Hatakka, A. (1990). The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J. Biotechnol. 13, 211–222.CrossRefGoogle Scholar
  367. Nishizawa, Y., Nakabayashi, K., and Shinagawa, E. (1995). Purification and characterization of laccase from white-rot fungus Trametes sanguinea M85-2. J. Ferment. Bioeng. 80, 91–93.CrossRefGoogle Scholar
  368. Nojiri, H., Habe, H., and Omari, T. (2001). Bacterial degradation of aromatic compounds via angular dioxygenation. J. Gen. Appl. Microbiol. 47, 279–305.PubMedCrossRefGoogle Scholar
  369. Norsker, M., Jensen, M., and Adler-Nissen, J. (2000). Enzymatic gelation of sugar beet pectin in food products. Food Hydrocolloids 14, 237–243.CrossRefGoogle Scholar
  370. Öberg, L.G., Glas, B., Swanson, S.E., Rappe, C.P., and Paul, K.G. (1990). Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch. Environ. Contam. Toxicol. 19, 930–938.PubMedCrossRefGoogle Scholar
  371. O’Callaghan, J., O’Brien, M.M., McClean, K., and Dobson, A.D.W. (2002). Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 29, 55–59.PubMedCrossRefGoogle Scholar
  372. Ogawa, J. and Shimizu, S. (1999). Microbial enzymes: New industrial applications from traditional screening methods. Trends Biotechnol. 17, 13–20.PubMedCrossRefGoogle Scholar
  373. Ohga, S., Smith, M., Thurston, C.F., and Wood, D.A. (1999). Transcriptional regulation of laccase and cellulase genes in the mycelium of Agaricus bisporus during fruit body development on a solid substrate. Mycol. Res. 103, 1557–1560.CrossRefGoogle Scholar
  374. Ohkuma, M., Muraoka, S., Tanimoto, T., Fujii, M., Ohta, A., and Takagi, M. (1995). Cyp 52 (cytochrome-P450 alk) multigene family in Candida maltosa. Identification and characterization of 8 members. DNA Cell Biol. 14, 163–173.PubMedCrossRefGoogle Scholar
  375. Okeke, B.C., Paterson, A., Smith, J.E., and Watson-Craik, I.A. (1997). Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl. Microbiol. Biotechnol. 48, 563–569.PubMedCrossRefGoogle Scholar
  376. Okeke, B.C., Smith, J.E., Paterson, A., and Watson-Craik, I.A. (1996). Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 45, 263–2PubMedCrossRefGoogle Scholar
  377. Okumura, T. and Nishikawa, Y. (1996). Gas chromatography-mass spectrometry determination of triclosans in water, sediment and fish samples via methylation with diazomethane. Anal. Chim. Acta 325, 175–184.CrossRefGoogle Scholar
  378. O’Malley, D.M., Whetten, R., Bao, W.L., Chen, C.L., and Sederoff, R.R. (1993). The role of laccase in lignification. Plant J. 4, 751–757.CrossRefGoogle Scholar
  379. Ong, E., Pollock, W.B.R., and Smith, M. (1997). Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene 196, 113–119.PubMedCrossRefGoogle Scholar
  380. Onodera, S. and Saitoh, K. (1997). Formation of chlorodibenzofurans upon thermo-chemical reactions of diphenyl ether herbicide (CNP). Jpn. J. Tox. Environ. Health 43, 293–299.Google Scholar
  381. Otterbein, L., Record, E., Longhi, S., Asther, M., and Moukha, S. (2000). Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. Eur. J. Biochem. 267, 1619–1625.PubMedCrossRefGoogle Scholar
  382. Paice, M.G., Archibald, F.S., Bourbonnais, R., Jurasek, L., Reid, I.D., Charles, T., and Dumonceaux, T. (1996). Enzymology of kraft pulp bleaching by Trametes versicolor. ACS Symp. Ser. 655, 151–164.CrossRefGoogle Scholar
  383. Paice, M.G., Bourbonnais, R., Reid, I.D., Archibald, F.S., and Jurasek, L. (1995). Oxidative bleaching enzymes— a review. J. Pulp Paper Sci. 21, J280-J284.Google Scholar
  384. Pallerla, S. and Chambers, R.P. (1998). Reactor development for biodegradation of pentachlorophenol. Catal. Today 40, 103–111.CrossRefGoogle Scholar
  385. Palmieri, G., Bianco, C., Cennamo, G., Giardina, P., Marino, G., Monti, M., and Sannia, G. (2001). Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67, 2754–2759.PubMedCrossRefGoogle Scholar
  386. Panwar, S.L., Krishnamurthy, S., Gupta, V., Alarco, A.M., Raymond, M., Sanglard, D., and Prasad, R. (2001). CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast 18, 1117–1129.PubMedCrossRefGoogle Scholar
  387. Pasamontes, L., Haiker, T., Wyss, M., Henriquez-Huecas, M., Mitchell, D.B., and van Loon, A.P.G.M (1997a). Cloning of phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim. Biophys. Acta 1353, 217–223.PubMedCrossRefGoogle Scholar
  388. Pasamontes, L., Haiker, T., Wyss, M., Tessier, M., and van Loon, A.P.G.M (1997b). Gene cloning, purification, and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63, 1696–1700.PubMedGoogle Scholar
  389. Patel, R.N., Thakker, G.D., and Rao, K.R. (1994). Potential use of a white-rot fungus Antrodiella sp. RK1 for biopulping. J. Biotechnol. 36, 19–23.CrossRefGoogle Scholar
  390. Pen, J., Verwoerd, T.C., Vanparidon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, U., van der Klis, J.D., Versteegh, H.A.J. et al. (1993). Phytase-containing transgenic seeds as novel feed additive for improved phosphorous utilization. Biotechnology 11, 811–814.CrossRefGoogle Scholar
  391. Penttila, M. (1998). Heterologous protein production in Trichoderma. In G.E. Harmann and C. Kubicek (eds.) Trichoderma and Gliocladium—enzymes, biological control and commercial applications. Taylor & Francis, London, pp. 365–382.Google Scholar
  392. Perfect, J.R., Wong, B., Chang, Y.C., Kwon-Chung, K.J., and Williamson, PR. (1998). Cryptococcus neoformans: Virulence and host defences. Med. Mycol. 36(Suppl. 1), 79–86.PubMedGoogle Scholar
  393. Perie, F.H. and Gold, M.H. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57, 2240–2245.PubMedGoogle Scholar
  394. Perie, EH., Reddy, G.V.V., Blackburn, N.J., and Gold, M.H. (1998). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch. Biochem. Biophys. 353, 349–355.PubMedCrossRefGoogle Scholar
  395. Petit, F., Le Goff, P., Cravedi, J.P., Valotaire, Y., and Pakdel, F. (1997). Two complementary bioassays for screening the estrogenic potency of xenobiotics: Recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J. Molec. Endocrinol. 19, 321–335.CrossRefGoogle Scholar
  396. Petrounia, I.P. and Arnold, F.H. (2000). Designed evolution of enzymatic properties. Curr. Opin. Biotechnol. 11, 325–330.PubMedCrossRefGoogle Scholar
  397. Petter, R., Kang, B.S., Boekhout, T., Davis, B.J., and Kwon-Chung, K.J. (2001). A survey of heterobasidiomycetous yeasts for the presence of the genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1 and CAP59. Microbiology 147, 2029–2036.PubMedGoogle Scholar
  398. Piacquadio, P., De Stefano, G., Sammartino, M., and Sciancalepore, V. (1997). Phenols removal from apple juice by laccase immobilized on Cu2+-chelate regenerable carrier. Biotechnol. Techn. 11, 515–517.CrossRefGoogle Scholar
  399. Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., and Eirich, L.D. (1992). Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio-Technology 10, 894–898.PubMedGoogle Scholar
  400. Pickard, M.A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65, 3805–3809.PubMedGoogle Scholar
  401. Pijnenburg, A.M.C.M., Everts, J.W., de Boer, J., and Boon, J.P (1995). Polybrominated biphenyl and diphenyl ether flame retardants: Analysis, toxicity and environmental occurrence. Rev. Environ. Contam. Toxicol. 141, 1–26.PubMedCrossRefGoogle Scholar
  402. Pilz, R., Hammer, E., Schauer, F., and Kragl, U. (2003). Laccase-catalyzed synthesis of coupling products of phenolic substrates in different reactors. Appl. Microbiol. Biotechnol. 60, 708–712.PubMedGoogle Scholar
  403. Piontek, K. (2002). New insights into lignin peroxidase. Ind. J. Chem. A — Inorg. Bio-Inorg. Phys. Theoret. Analyt. Chem. 41, 46–53.Google Scholar
  404. Planas, A. (2000). Bacterial 1,3-1,4-ß-glucanases: Structure, function and protein engineering. Biochim. Biophys. Acta 1543, 361–382.PubMedCrossRefGoogle Scholar
  405. Pointing, S.B. (2001). Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 57, 20–33.PubMedCrossRefGoogle Scholar
  406. Pollard, S.J.T., Hrudey, S.E., and Fedorak, P.M. (1994). Bioremediation of petroleum-and creosote-contaminated soils—a review of constraints. Waste Manag. Res. 12, 173–194.Google Scholar
  407. Polnisch, E., Kneifel, F., Franzke, H., and Hofmann, K.H. (1992). Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2, 193–199.CrossRefGoogle Scholar
  408. Pommer, E.H. and Lorentz, G. (1982). Resistance of Botrytis cinerea to dicarboximide fungicides—a literature review. Crop Protect. 1, 221–230.CrossRefGoogle Scholar
  409. Poutanen, K. (1997). Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Tech. 8, 300–306.CrossRefGoogle Scholar
  410. Prenafeta-Boldu, F.X., Luykx, D.M.A.M., Vervoort, J., and de Bont, J.A.M. (2001). Fungal metabolism of toluene: Monitoring of fluorinated analogs by F-19 nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 67, 1030–1034.PubMedCrossRefGoogle Scholar
  411. Quan, C., Zhang, L., Wang, Y., and Ohta, Y. (2001). Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J. Biosci. Bioeng. 92, 154–160.PubMedGoogle Scholar
  412. Rabinovich, M.L., Melnik, M.S., and Boloboba, A.V. (2002). Microbial cellulases. Appl. Biochem. Microbiol. 38, 305–321.CrossRefGoogle Scholar
  413. Radwan, S.S. and Sorkhoh, N.A. (1993). Lipids of n-alkane-utilizing microorganisms and their application potential. Adv. Appl. Microbiol. 39, 29–90.CrossRefGoogle Scholar
  414. Raghukumar, C., D’Souza, T.M., Thorn, R.G., and Reddy, C.A. (1999). Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl. Environ. Microbiol. 65, 2103–2111.PubMedGoogle Scholar
  415. Rahouti, M., Steiman, R., Seigle-Murandi, F., and Christov, L.P. (1999). Growth of 1044 strains and species of fungi on 7 phenolic lignin model compounds. Chemosphere 38, 2549–2559.CrossRefGoogle Scholar
  416. Ralph, J.P., Graham, L.A., and Catcheside, D.E.A. (1996). Extracellular oxidases and the transformation of solubilised low rank coal by wood-rot fungi. Appl. Microbiol. Biotechnol. 46, 226–232.CrossRefGoogle Scholar
  417. Ratledge, C. (1988). Hydrocarbons. Products of hydrocarbon microorganism interaction. In D.R. Houghton, R.N. Smith, and H.O.W. Eggins, (eds.) Biodeterioration 7, Elsevier Appl. Sci., London, pp. 219–235.Google Scholar
  418. Ravelet, C., Krivobok, S., Sage, L., and Steiman, R. (2000). Biodegradation of pyrene by sediment fungi. Chemosphere 40, 557–563.PubMedCrossRefGoogle Scholar
  419. Read, G. and Vining, L.C. (1959). Telephoric acid. Can. J. Chem. 37, 1442–1445.CrossRefGoogle Scholar
  420. Record, E., Punt, P.J., Chamkha, M., Labat, M., van den Hondel, C.A.M.J.J., and Asther, M. (2002). Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur. J. Biochem. 269, 602–609.PubMedCrossRefGoogle Scholar
  421. Reddy, C.A. and D’Souza, T.M. (1994). Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13, 137–152.PubMedCrossRefGoogle Scholar
  422. Reddy, G.V.B., Gelpke, M.D.S., and Gold, M.H. (1998). Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: Involvement of reductive dechlorination. J. Bacteriol. 180, 5159–5164.PubMedGoogle Scholar
  423. Reddy, G.V.B., Joshi, D.K., and Gold, M.H. (1997). Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiology 143, 2353–2360.CrossRefGoogle Scholar
  424. Reyes, P., Pickard, M.A., and Vasquez-Duhalt, R. (1999). Hydroxybenzotriazole increases the range if textile dyes decolorized by immobilized laccase. Biotechnol. Lett. 21, 875–880.CrossRefGoogle Scholar
  425. Richardson, A., Duncan, J., and McDougall, G.J. (2000). Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: Identification of a conifer laccase. Tree Physiol. 20, 1039–1047.PubMedCrossRefGoogle Scholar
  426. Richardson, A.E., Hadobas, P.A., and Hayes, J.E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from hytate. Plant J. 25, 641–649.PubMedCrossRefGoogle Scholar
  427. Ricotta, A., Unz, R.F., and Bollag, J.M. (1996). Role of a laccase in the degradation of pentachlorophenol. Bull. Environ. Contam. Toxicol. 57, 560–567.PubMedCrossRefGoogle Scholar
  428. Rigling, D. and van Alfen, N.K. (1993). Extracellular and intracellular laccases of the chestnut blight fungus, Cryphonectria parasitica. Appl. Environ. Microbiol. 59, 3634–3639.PubMedGoogle Scholar
  429. Rigot, J. and Matsumura, F. (2002). Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings. J. Environ. Sci. Health B 37, 202–210.Google Scholar
  430. Roberts, S.A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J.T., Tollin, G., Rensing, C., and Montfort, W.R. (2002). Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci.U.S.A. 99, 2766–2771.PubMedCrossRefGoogle Scholar
  431. Robinson, T., Chandran, B., and Nigam, P. (2001). Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Technol. 29, 575–579.CrossRefGoogle Scholar
  432. Rodriguez, E., Pickard, M.A., and Vazquez-Duhalt, R. (1999). Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol. 38, 27–32.PubMedCrossRefGoogle Scholar
  433. Rogalski, J., Lundell, T.K., Leonowicz, A., and Hatakka, A.I. (1991). Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata. Phytochemisiry 30, 2869–2872.CrossRefGoogle Scholar
  434. Romero, M.C., Hammer, E., Cazau, M.C., and Arambarri, A.M. (2001). Selection of autochthonous yeast strains able to degrade biphenyl. World J. Microbiol. Biotechnol. 17, 591–594.CrossRefGoogle Scholar
  435. Rosenbrock, P., Martens, R., Buscot, F., Zadrazil, F., and Munch, J.C. (1997). Enhancing the mineralization of [U-14C]dibenzo-p-dioxin in three different soils by addition of organic substrate or inoculation with whiterot fungi. Appl. Microbiol. Biotechnol. 48, 665–670.CrossRefGoogle Scholar
  436. Rothemund, C., Amann, R., Klugbauer, S., Manz, W., Bieber, C., Schleifer, K.H., and Wilderer, P. (1996). Microflora of 2,4-dichlorophenoxyacetic acid degrading biofilms on gas permeable membranes. Syst. Appl. Microbiol 19, 608–615.CrossRefGoogle Scholar
  437. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K.C., and Jones, T.A. (1990). Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386.PubMedCrossRefGoogle Scholar
  438. Ruttimann-Johnson, C., Cullen, D., and Lamar, R.T. (1994). Manganese peroxidases of the white-rot fungus Phanerochaete sordida. Appl. Environ. Microbiol. 60, 599–605.PubMedGoogle Scholar
  439. Ruttimann-Johnson, C. and Lamar, R.T. (1996). Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl. Environ. Microbiol. 62, 3890–3893.PubMedGoogle Scholar
  440. Ryazanova, L.P., Mikhaleva, N.I., Solveva, I.V., Boev, A.V., Okunev, O.N., and Kulaev, I.S. (1996). Pectolytic enzymes from Aspergillus heteromorphus. Appl. Biochem. Microbiol. 32, 1–6.Google Scholar
  441. Ryu, D.D.Y. and Nam, D.-H. (2000). Recent progress in biomolecular engineering. Biotechnol. Progr. 16, 2–16.CrossRefGoogle Scholar
  442. Sack, U., Heinze, T.M., Deck, J., Cerniglia, C.E., Martens, R., Zadrazil, F., and Fritsche, W. (1997a). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl. Environ. Microbiol. 63, 3919–3925.PubMedGoogle Scholar
  443. Sack, U., Hofrichter, M., and Fritsche, W. (1997b). Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol. Lett. 152, 227–2PubMedCrossRefGoogle Scholar
  444. Safe, S., Ellis, B., and Hutzinger, O. (1976). The in vitro hydroxylation of 4′-chloro-4-biphenylol by a mushroom tyrosinase preparation. Can. J. Microbiol. 22, 104–106.PubMedCrossRefGoogle Scholar
  445. Safe, S., Hutzinger, O., Ecobichon, O.J., and Grey, A.A. (1975a). The metabolism of 4′-chloro-4-biphenylol in the rat. Can. J. Biochem. 53, 415–420.PubMedCrossRefGoogle Scholar
  446. Safe, S., Platonow, N., and Hutzinger, O. (1975b). Metabolism of chlorobiphenyls in the goat and cow. J. Agric. Food Chem. 23, 259–261.PubMedCrossRefGoogle Scholar
  447. Sahasrabudhe, N.A. and Sankpal, N.V. (2001). Production of organic acids and metabolites of fungi for food industry. In G.G. Khachatourians and D.K. Arora (eds.), Applied Mycology and Biotechnology. Vol. 1: Agriculture and Food Production (pp. 387–425). Amsterdam: Elsevier.Google Scholar
  448. Sahasrabudhe, S.R., Shailubhai, K., Vora, K.A., and Modi, V.V. (1987). Dehalogenation of chlorinated derivatives of phenoxyacetic acid by Aspergillus niger. Microbios 34, 19–22.Google Scholar
  449. Sanchez-Amat, A., Lucas-Elio, P., Fernandez, E., Garcia-Borron, J.C., and Solano, F. (2001). Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophys. Acta — Protein Struct. Mol. Enzymol. 1547, 104–116.CrossRefGoogle Scholar
  450. Sanglard, D. and Loper, J.C. (1989). Characterization of the alkane-inducible cytochrome P-450 (P-450 alk) gene from the yeast Candida tropicalis. Identification of a new P-450 gene family. Gene 76, 121–136.PubMedCrossRefGoogle Scholar
  451. Sauer, J., Sigurskjold, B.W., Christensen, U., Frandsen, T.P., Mrgorodskaya, E., Harrison, A., Roepstorff, P., and Svensson, B. (2000). Glucoamylase: Structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275–29PubMedCrossRefGoogle Scholar
  452. Saxena, R.K., Gupta, R., Saxena, S., and Gulati, R. (2001). Role of fungal enzymes in food processing. In G.G. Khachatourians and D.K. Arora (eds.) Applied mycology and biotechnology: Agriculture and food production (Vol. 1). Elsevier Science, Amsterdam, pp. 353–386.Google Scholar
  453. Schäfer, A., Specht, M., Hetzheim, A., Francke, W., and Schauer, F. (2001). Synthesis of substituted imidazoles and dimerization products using cells and laccase from Trametes versicolor. Tetrahedron 57, 7693–7699.CrossRefGoogle Scholar
  454. Schauer, F., Henning, K., Pscheidl, H., Wittich, R.M., Fortnagel, P., Wilkes, H., Sinnwell, V., and Francke, W. (1995). Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752. Biodegradation 6, 173–180.PubMedCrossRefGoogle Scholar
  455. Schauer, F., Lindequist, IL, Hammer, E., Jülich, W.D., Schäfer, A., and Jonas, U. (2001). Biotransformation von biologisch aktiven Verbindungen aus verschiedenen chemischen Stoffklassen mittels der Enzyme Laccase und Manganperoxidase. Patentschrift, PCP/EP 01/07152. Google Scholar
  456. Scheibner, K., Hofrichter, M., and Fritsche, W. (1997). Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol. Lett. 19, 835–839.CrossRefGoogle Scholar
  457. Scheller, U., Zimmer, T., Becher, D., Schauer, F., and Schunck, W.-H. (1998). Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3. J. Biol. Chem. 273, 32528–32534.PubMedCrossRefGoogle Scholar
  458. Scherer, M. and Fischer, R. (2001). Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans. FEMS Microbiol. Lett. 199, 207–213.PubMedCrossRefGoogle Scholar
  459. Schlosser, D. and Hofer, C. (2002). Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl. Environ. Microbiol. 68, 3514–3521.PubMedCrossRefGoogle Scholar
  460. Schmidt, O., Dittberner, D., and Faix, O. (1991). On the reaction of some bacteria and fungi on coal-tar creosote. Mater. Organismen 26, 13–30.Google Scholar
  461. Scholz, F., Schädel, S., Schultz, A., and Schauer, F. (2000). Chronopotentiometric study of laccase-catalyzed oxidation of quinhydrone microcrystals immobilised on a gold electrode surface and of the oxidation of a phenol-derivatised graphite electrode surface. J. Electroanalyt. Chem. 480, 241–248.CrossRefGoogle Scholar
  462. Schouten, A., Wagemakers, L., Stefanato, F.L., van der Kaaij, R.M., and van Kann, J.A.L. (2002). Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol. Microbiol. 43, 883–894.PubMedCrossRefGoogle Scholar
  463. Schultz, A., Jonas, U., Hammer, E., and Schauer, F. (2001). Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl. Environ. Microbiol. 67, 4377–4381.PubMedCrossRefGoogle Scholar
  464. Schultz, T.W., Kraut, D.H., Sayler, G.S., and Layton, A.C. (1998). Estrogenicity of selected biphenyls evaluated using a recombinant yeast assay. Environ. Toxicol. Chem. 17, 1727–1729.CrossRefGoogle Scholar
  465. Schunck, W.-H., Kärgel, E., Grass, B., Wiedmann, B., Mauersberger, S., Köpke, K., Kiessling, U., Strauss, M. et al. (1989). Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem. Biophys. Res. Commun. 161, 843–850.PubMedCrossRefGoogle Scholar
  466. Schwartz, R.D., Williams, A.L., and Hutchinson, D.B. (1980). Microbial production of 4,4′-dihydroxybiphenyl: Biphenyl hydroxylation by fungi. Appl. Environ. Microbiol. 39, 702–708.PubMedGoogle Scholar
  467. Sealey, J., Ragauskas, A.J., and Elder, T.J. (1999). Investigations into laccase-mediator delignification of kraft pulps. Holzforschung 53, 498–502.CrossRefGoogle Scholar
  468. Seghezzi, W., Meili, C., Ruffiner, R., Künzi, R., Sanglard, D., and Fiechter, A. (1992). Identification and characterization of additional members of the cytochrome P450 multigene family cyp 52 of Candida tropicalis. DNA Cell Biol. 11, 767–780.PubMedCrossRefGoogle Scholar
  469. Seigle-Murandi, FM., Krivobok, S.M.A., Steiman, R.L., Benoit-Guyod, J.-L.A., and Thiault, G.-A. (1991). Biphenyl oxide hydroxylation by Cunninghamella echinulata. J. Agric. Food Chem. 39, 428–430.CrossRefGoogle Scholar
  470. Seigle-Murandi, F., Steiman, R., Benoit-Guyod, J.L., and Guiraud, P. (1993). Fungal degradation of pentachlorophenol by Micromycetes. J. Biotechnol. 30, 27–35.CrossRefGoogle Scholar
  471. Seigle-Murandi, F., Toe, A., Benoit-Guyod, J.L., Steiman, R., and Kadri, M. (1995). Depletion of pentachlorophenol by deuteromycetes isolated from soil. Chemosphere 31, 2677–2686.CrossRefGoogle Scholar
  472. Sephton, M.A., Looy, C.V., Veefkind, R.J., Visscher, H., Brinkhuis, H., and de Leeuw, J.W. (1999). Cyclic diaryl ethers in a Late P sediment. Org. Geochem. 30, 267–273.CrossRefGoogle Scholar
  473. Shafiee, A., Harris, G., Motamedi, H., Rosenbach, M., Chen, T., Zink, D., and Heimbuch, B. (2001). Microbial hydroxylation of rustmicin (galbonolide A) and galbonolide B, two antifungal products produced by Micromonospora sp. J. Mol. Catal. B—Enzym., 11, 237–24CrossRefGoogle Scholar
  474. Shailubhai, K., Sahasrabudhe, S.R., Vora, K.A., and Modi, V.V. (1983). Degradation of chlorinated derivatives of phenoxyacetic acid and benzoic acid by Aspergillus niger. FEMS Microbiol. Lett. 18, 279–282.CrossRefGoogle Scholar
  475. Sheldon, R.A. (1994). Metalloporphyrius in catalytic oxidation. Marcel Dekker Inc., New York.Google Scholar
  476. Sherry, J. (1994). Effects of 2,4-dichlorophenoxyacetic acid on fungal propagules in fresh-water ponds. Environ. Toxicol Water Qual. 9, 209–221.CrossRefGoogle Scholar
  477. Shimizu, M. (1993). Purification and characterization of phytase and acid phosphatase by Aspergillus oryzae K1. Biosci. Biotechnol. Biochem. 57, 1364–1365.CrossRefGoogle Scholar
  478. Shuttleworth, K.L., Postie, L., and Bollag, J.M. (1986). Production of induced laccase by the fungus Rhizoctonia praticola. Can. J. Microbiol. 32, 867–870.CrossRefGoogle Scholar
  479. Sietmann, R. (2002). Physiologische und biochemische Charakterisierung der Transformation umweltrelevanter Verbindungen mit Biarylstruktur durch Hefen der Gattung Trichosporon. Doctoral dissertation, University of Greifswald.Google Scholar
  480. Sietmann, R., Hammer, E., and Schauer, F. (2002). Biotransformation of biarylic compounds by yeasts of the genus Trichosporon. Syst. Appl. Microbiol. 25, 332–339.PubMedCrossRefGoogle Scholar
  481. Sietmann, R., Hammer, E., Moody, J., Cerniglia, C.E., and Schauer, F. (2000). Hydroxylation of biphenyl by the yeast Trichosporon mucoides. Arch. Microbiol. 174, 353–361.PubMedCrossRefGoogle Scholar
  482. Sietmann, R., Hammer, E., Specht, N., Cerniglia, C.E., and Schauer, F. (2001). Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl. Environ. Microbiol. 67, 4158–4165.PubMedCrossRefGoogle Scholar
  483. Silva, C.M.M.D., de Melo, I.S., Maia, A.D.N., and Abakerli, R.B. (1999). Isolation of carbendazim degrading fungi. Pesqui. Agropecu. Bras. 34, 1255–1264.CrossRefGoogle Scholar
  484. Sinnott, M.L. (1990). Catalytic mechanism of enzymatic glycosyl transfer. Chem. Rev. 90, 1171–1202.CrossRefGoogle Scholar
  485. Skorobogatko, O.V., Stepanova, E.V., Gavrilova, V.P., and Yaropolov, A.I. (1996). Effects of inducer on the synthesis of extracellular laccase by Coriolus hirsutus, a basidial fungus. Appl. Biochem. Microbiol. 32, 473–376.Google Scholar
  486. Slomczynski, D., Nakas, J.P., and Tanenbaum, S.W. (1995). Production and characterization of laccase from Botrytis cinerea-61-34. Appl. Environ. Microbiol. 61, 907–912.PubMedGoogle Scholar
  487. Smirnov, S.A., Koroleva, O.V., Gavrilova, V.P., Belova, A.B., and Klyachko, N.L. (2001). Laccases from basidiomycetes: Physicochemical characteristics and substrate specificity towards methoxyphenolic compounds. Biochemistry (Moscow) 66, 774–779.CrossRefGoogle Scholar
  488. Smith, J.G. and Christophers, A.J. (1992). Phenoxy herbicides and chlorophenols: A case control study on soft tissue sarcoma and malignant lymphoma. Br. J. Cancer 65, 442–448.PubMedCrossRefGoogle Scholar
  489. Smith, R.V. and Rosazza, J.P. (1974). Microbial models of mammalian metabolism. Arch. Biochem. Biophys. 161, 551–558.PubMedCrossRefGoogle Scholar
  490. Smith, R.V., Davis, P.J., Clark, A.M., and Glover-Milton, S. (1980). Hydroxylation of biphenyl by fungi. J. Appl. Bacteriol. 49, 65–73.PubMedCrossRefGoogle Scholar
  491. Soares, G.M.B., Amorim, M.T.P., Hrdina, R., and Costa-Ferreira, M. (2002). Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem. 37, 581–587.CrossRefGoogle Scholar
  492. Soden, D.M. and Dobson, A.D.W. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147, 1755–17PubMedGoogle Scholar
  493. Solano, F., Garcia, E., de Egea, E.P., and Sanchez-Amat, A. (1997). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 63, 3499–3506.PubMedGoogle Scholar
  494. Solano, F., Lucas-Elio, P., Fernandez, E., and Sanchez-Amat, A. (2000). Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J. Bacteriol. 182, 3754–3760.PubMedCrossRefGoogle Scholar
  495. Srebotnik, E. and Hammel, K.E. (2000). Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J. Biotechnol. 81, 179–188.PubMedCrossRefGoogle Scholar
  496. Steffens, J.J., Pell, E.J., and Tien, M. (1996). Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 7, 348–355.PubMedCrossRefGoogle Scholar
  497. Stemmer, W.P.C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.PubMedCrossRefGoogle Scholar
  498. Stenroos, S. (1989). Taxonomic revision of the Cladonia miniata group. Ann. Bot. Fenn. 26, 237–261.Google Scholar
  499. Stephan, L, Leithoff, H., and Peek, R.D. (1996). Microbial conversion of wood treated with salt preservatives. Mater. Organismen 30, 179–199.Google Scholar
  500. Stope, M.B., Becher, D., Hammer, E., and Schauer, F. (2002). Cometabolic ring fission of dibenzofuran by Gramnegative and Gram-positive biphenyl-utilizing bacteria. Appl. Microbiol. Biotechnol. 59, 62–67.PubMedCrossRefGoogle Scholar
  501. Sun, Y. and Cheng, J.Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Biores. Technol. 83, 1–11.CrossRefGoogle Scholar
  502. Sunna, A. and Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.PubMedCrossRefGoogle Scholar
  503. Svenson, A., Kjeller, L.-O., and Rappe, C. (1989). Enzyme-mediated formation of 2,3,7,8-tetrasubstituted chlorinated dibenzodioxins and dibenzofurans. Environ. Sci. Technol. 23, 900–902.CrossRefGoogle Scholar
  504. Takada, S., Nakamura, M., Matsueda, T., Kondo, R., and Sakai, K. (1996). Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 62, 4323–4328.PubMedGoogle Scholar
  505. Takagi, M., Ohkuma, M., Kobayashi, N., Watanabe, M., and Yano, K. (1989). Purification of cytochrome P450alk from normal-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the encoding gene. Agric. Biol. Chem. 53, 2217–2227.CrossRefGoogle Scholar
  506. Takahashi, A., Agatsuma, T., Matsuda, M., Ohta, T., Nunozawa, T., Endo, T., and Nozoe, S. (1992). Russuphelin A, a new cytotoxic substance from the mushroom Russula subnigricans. Chem. Pharm. Bull. 40, 3185–3188.PubMedCrossRefGoogle Scholar
  507. Takahashi, A., Agatsuma, T., Ohta, T., Nunozawa, T., and Endo, T. (1993). Russuphelin-B, russuphelin-C, russuphelin-D, russuphelin-F, new cytotoxic substances from the mushroom Russula subnigricans Hongo. Chem. Pharm. Bull. 41, 1726–1729.PubMedCrossRefGoogle Scholar
  508. Takamine, J. (1894). Process of making diastatic enzyme. US Patent 525, 823. Google Scholar
  509. Tanaka, C., Tajima, S., Furusawa, I., and Tsuda, M. (1992). The Pgrl mutant of Cochliobolus heterostrophus lacks a p-diphenol oxidase involved in naphthalenediol melanin synthesis. Mycol. Res. 96, 959–964.CrossRefGoogle Scholar
  510. Tanaka, T., Tonosaki, T., Nose, M., Tomidokoro, N., Kadomura, N., Fujii, T., and Taniguchi, M. (2001). Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. in a rotating reactor. J. Biosci. Bioeng. 92, 312–316.PubMedGoogle Scholar
  511. Tekere, M., Ncube, I., Read, J.S., and Zvauya, R. (2002). Biodegradation of the organochlorine pesticide, lindane by a sub-tropical white rot fungus in batch and packed bed bioreactor systems. Environ. Technol. 23, 199–206.PubMedCrossRefGoogle Scholar
  512. Temp, U., Meyrahn, H., and Eggert, C. (1999a). Extracellular phenol oxidase patterns during depolymerization of low-rank coal by three basidiomycetes. Biotechnol. Lett. 21, 281–287.CrossRefGoogle Scholar
  513. Temp, U., Zierold, U., and Eggert, C. (1999b). Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236, 169–177.PubMedCrossRefGoogle Scholar
  514. ten Have, R. and Teunissen, P.J.M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101, 3397–3413.PubMedCrossRefGoogle Scholar
  515. Thiele, S., Fernandes, E., and Bollag, J.M. (2002). Enzymatic transformation and binding of labeled 2,4,6-trini-trotoluene to humic substances during an anaerobic/aerobic incubation. J. Environ. Qual. 31, 437–444.PubMedCrossRefGoogle Scholar
  516. Thomas, B.R., Yonekura, M., Morgan, T.D., Czapla, T.H., Hopkins, T.L., and Kramer, K.J. (1989). A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem. 19, 611–622.CrossRefGoogle Scholar
  517. Thomas, D.R., Carswell, K.S., and Georgiou, G. (1992). Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol. Bioeng. 40, 1395–1402.PubMedCrossRefGoogle Scholar
  518. Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., Lassen, S.F., Burger, D. et al. (2002). Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68, 1907–1913.Google Scholar
  519. Tomschy, A., Tessier, M., Wyss, M., Brugger, R., Broger, C., Schnoebelen, L., van Loon, A.P.G.M, and Pasamontes, L. (2000). Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three dimensional structure. Protein Sci. 9, 1304–1311.PubMedCrossRefGoogle Scholar
  520. Törrönen, A., Harkki, A., and Rouvinen, J. (1994). Three-dimensional structure of endo-1,4-beta-xylañase II from Trichoderma reesei: Two conformational states in the active site. EMBO J. 13, 2493–2501.PubMedGoogle Scholar
  521. Tsai, H.F., Wheeler, M.H., Chang, Y.C., and Kwon-Chung, K.J. (1999). A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J. Bacteriol. 181, 6469–6477.PubMedGoogle Scholar
  522. Tsioulpas, A., Dimou, D., Iconomou, D., and Aggelis, G. (2002). Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (lacease) activity. Biores. Technol. 84, 251–257.CrossRefGoogle Scholar
  523. Tsujimoto, T., Uyama, H., and Kobayashi, S. (2001). Polymerization of vinyl monomers using oxidase catalysts. Macromolec. Biosci. 1, 228–232.CrossRefGoogle Scholar
  524. Tuomela, M., Lyytikainen, M., Oivanen, P., and Hatakka, A. (1999). Mineralization and conservation of pentachlorophenol (PCP) in soil inoculated with the white rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74.CrossRefGoogle Scholar
  525. Turner, W.B. and Aldridge, D.C. (1983). Fungal metabolites II. Academic Press, London.Google Scholar
  526. Uchida, H., Fukuda, T., Miyamoto, H., Kawabata, T., Suzuki, M., and Uwajima, T (2001). Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem. Biophys. Res. Commun. 287, 355–358.PubMedCrossRefGoogle Scholar
  527. Ullah, M.A., Bedford, C.T., and Evans, C.S. (2000). Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 53, 230–234.PubMedCrossRefGoogle Scholar
  528. Uyama, H. (2001). Enzymatic synthesis and applications of new polymeric materials. Kobunshi Ronbunshu 58, 382–296.CrossRefGoogle Scholar
  529. Valli, K. and Gold, M.H. (1991). Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173, 345–352.PubMedGoogle Scholar
  530. van Aken, B. and Agathos, S.N. (2002). Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Appl. Microbiol. Biotechnol. 58, 345–352.PubMedCrossRefGoogle Scholar
  531. van Aken, B., Hofrichter, M., Scheibner, K., Hatakka, A.I., Naveau, H., and Agathos, S.N. (1999). Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10, 83–91.PubMedCrossRefGoogle Scholar
  532. van den Brink, H.J.M., van Gorcom, R.F.M., van den Hondel, C.A.M.J.J., and Punt, P.J. (1998). Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 23, 1–17.PubMedCrossRefGoogle Scholar
  533. Vares, T., Kalsi, M., and Hatakka, A. (1995). Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw. Appl. Environ. Microbiol. 61, 3515–3520.PubMedGoogle Scholar
  534. Vares, T., Lundell, T.K., and Hatakka, A.I. (1993). Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme Microb. Technol. 15, 664–669.CrossRefGoogle Scholar
  535. Vasconcelos, A.F.D., Barbosa, A.M., Dekker, R.F.H., Scarminio, I.S., and Rezende, M.I. (2000). Optimization of laccase production by Botrysphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem. 35, 1131–1138.CrossRefGoogle Scholar
  536. Vazquezduhalt, R., Westlake, D.W.S., and Fedorak, P.M. (1994). Lignin peroxidase oxidation of aromatic-compounds in systems containing organic-solvents. Appl. Environ. Microbiol. 60, 459–466.Google Scholar
  537. Venkov, P., Topashka-Ancheva, M., Georgieva, M., Alexieva, V., and Karanov, E. (2000). Genotoxic effect of substituted phenoxyacetic acids. Arch. Toxicol. 74, 560–566.PubMedCrossRefGoogle Scholar
  538. Viney, I. and Bewly, R.J.F. (1990). Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Appl. Environ. Contam. Toxicol. 19, 789–796.CrossRefGoogle Scholar
  539. Vroumsia, T., Steiman, R., Seigle-Murandi, F., and Benoit-Guyod, J.L. (1999). Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi. Chemosphere 39, 1397–1405.PubMedCrossRefGoogle Scholar
  540. Vyas, B.R.M., Sasek, V., Matucha, M., and Bubner, M. (1994a). Degradation of 3,3′,4,4′-tetrachlorobiphenyl by selected white-rot fungi. Chemosphere 28, 1127–1134.CrossRefGoogle Scholar
  541. Vyas, B.R.M., Volc, J., and Sasek, V. (1994b). Ligninolytic enzymes of selected white-rot fungi cultivated on wheat-straw. Folia Microbiol. 39, 235–240.CrossRefGoogle Scholar
  542. Wachtmeister, C.A. (1956). Studies on the chemistry of lichens. Acta Chem. Scand. 10, 1404–1413.CrossRefGoogle Scholar
  543. Wagner, H.-C., Schramm, K.-W., and Hutzinger, O. (1990). Biogenes polychloriertes Dioxin aus Trichlorphenol. Z. Umweltchem. Ökotox. 2, 63–65.CrossRefGoogle Scholar
  544. Wahleithner, J.A., Xu, F., Brown, K.M., Brown, S.H., Golightly, E.J., Halkier, T., Kauppinen, S., Pederson, A. et al. (1996). The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr. Genet. 29, 395–403.PubMedCrossRefGoogle Scholar
  545. Waldo, G.S., Standish, B.M., Berendzen, J., and Terwilliger, T.C. (1999). Rapid protein folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695.PubMedCrossRefGoogle Scholar
  546. Wallnöfer, R.R., Engelhardt, G., Safe, O., and Hutzinger, O. (1973). Microbial hydroxylation of 4-chlorobiphenyl and 4,4′-chlorobiphenyl. Chemosphere 2, 69–72.CrossRefGoogle Scholar
  547. Ward, M., Wilson, L.J., Kodama, K.H., Rey, M.W., and Berka, R.M. (1990). Improved production of chymosin in Aspergillus by expression as a glucoamylase chymosin fusion. Bio-Technology 8, 435–440.PubMedGoogle Scholar
  548. Wariishi, H., Dunford, H.B., MacDonald, I.D., and Gold, M.H. (1989). Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 264, 3335–3340.PubMedGoogle Scholar
  549. Wild, B.L. (1983). Double resistance by citrus green mould Penicillium digitatum to the fungicides guazatine and benomyl. Ann. Appl. Biol. 103, 237–241.CrossRefGoogle Scholar
  550. Williamson, P.R. (1994). Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans—identification as a laccase. J. Bacteriol. 176, 656–664.PubMedGoogle Scholar
  551. Williamson, PR., Wakamatsu, K., and Ito, S. (1998). Melanin biosynthesis in Cryptococcus neoformans. J. Bacteriol. 180, 1570–15PubMedGoogle Scholar
  552. Willmann, G. and Fakoussa, R.M. (1997). Extracellular oxidative enzymes of coal-attacking fungi. Fuel Proc. Technol. 52, 27–41.CrossRefGoogle Scholar
  553. Wiseman, A., Gondal, J.A., and Sims, P. (1975). 4′-Hydroxylation of biphenyl by yeast containing cytochrome P450: Radiation and thermal stability, comparisons with liver enzyme (oxidized and reduced forms). Biochem. Soc. Trans. 3, 278–281.PubMedGoogle Scholar
  554. Wittich, R.-M. (1998a). Biodegradation of dioxins and furans. Springer-Verlag, Berlin.Google Scholar
  555. Wittichai, R.-M. (1998b). Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol. 49, 489–499.CrossRefGoogle Scholar
  556. Wittich, R.-M., Wilkes, H., Sinnwell, V., Francke, W., and Fortnagel, P. (1992). Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58, 1005–1010.PubMedGoogle Scholar
  557. Wodzinski, R.J. and Ullah, A.H.J. (1996). Phytase. Adv. Appl. Microbiol. 42, 263–302.PubMedCrossRefGoogle Scholar
  558. Wolfenden, R., Lu, X., and Young, G. (1998). Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815.CrossRefGoogle Scholar
  559. Wolter, M., Zadrazil., F., Martens, R., and Bahadir, M. (1997). Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotos sp. Florida in solid wheat straw substrate. Appl. Microbiol. Biotechnol. 48, 398–404.CrossRefGoogle Scholar
  560. Wong, K.K.Y. and Mansfield, S.D. (1999). Enzymatic processing for pulp and paper manufacture—a review. Appita J. 52, 409–418.Google Scholar
  561. Xia, G., Jin C., Zhou, J., Yang, S., Zhang, S., and Jin, C. (2001). A novel chitinase having a unique mode of action from Aspergillus fumgatus YJ-407. Eur. J. Biochem. 268, 4079–4085.PubMedCrossRefGoogle Scholar
  562. Xu, F. (1999). Laccase. In M.C. Flickinger and S.W. Drew (eds). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. Wiley, New York, pp. 1545–1554.Google Scholar
  563. Yadav, J.S., Quensen, J.F., Tiedje, J.M., and Reddy, C.A. (1995). Degradation of polychlorinated biphenyl mixtures (Aroclor-1242, Aroclor-1254 and Aroclor-1260) by the white-rot fungus Phanerochaete chrysosporium as evidence by congener-specific analysis. Appl. Environ. Microbiol. 61, 2560–2565.PubMedGoogle Scholar
  564. Yaropolov, A.I., Kharybin, A.N., Emneus, J., Markovarga, G., and Gorton, L. (1995). Flow-injection analysis of phenols at a graphite electrode modified with co-immobilized laccase and tyrosinase. Anal Chim. Acta 308, 137–144.CrossRefGoogle Scholar
  565. Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S., and Varfolomeyev, S.D. (1994). Laccase-properties, catalytic mechanism, and applicability. Appl. Biochem. Biotechnol. 49, 257–280.CrossRefGoogle Scholar
  566. Yaver, D.S. and Golightly, E.J. (1996). Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: Genomic organization of the laccase gene family. Gene 181, 95–102.PubMedCrossRefGoogle Scholar
  567. Yaver, D.S., Overjero, M.D., Xu, F., Nelson, B.A., Brown, K.M., Halkier, T., Bernauer, S., Brown, S.H. et al. (1999). Molecular characterization of laccase gene from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lccl. Appl. Environ. Microbiol. 65, 4943–4948.PubMedGoogle Scholar
  568. Zeddel, A., Majcherczyk, A., and Hiittermann, A. (1993). Degradation of polychlorinated biphenyls by the whiterot fungi Pleurotos ostreatus and Trametes versicolor in a solid state system. Toxicol. Environ. Chem. 40, 255–266.CrossRefGoogle Scholar
  569. Zeddel, A., Majcherczyk, A., and Hiittermann, A. (1994). Degradation and mineralization of polychlorinated biphenyls by white rot fungi in solid-phase and soil incubation experiments. In R.E. Hinchee (ed.) Bioremediation of chlorinated and polychlorinated aromatic hydrocarbon compounds. Lewis Publ. Boca Raton, pp. 436–440.Google Scholar
  570. Zhang, S. and Williamson, P.R. (2001). Laccase gene expression in response to glucose starvation and temperature via Hsp70 and Hsf regulation. Mol. Biol. Cell 12 (Suppl. S), 1224.Google Scholar
  571. Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Denbow, D.M., Veit, H.P., and Larsen, C.T. (2000a). Comparison of genetically engineered microbial and plant phytases for young broilers. Poultry Sci. 79, 709–717.Google Scholar
  572. Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Wilson, J.H., and Veit, H.P. (2000b). Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci. 78, 2868–2878.PubMedGoogle Scholar
  573. Zhao, J. and Kwan, H.S. (1999). Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl. Environ. Microbiol. 65, 4908–4913.PubMedGoogle Scholar
  574. Zhu, X.D., Gibbons, J., Garcia-Rivera, J., Casadevall, A., and Williamson, P.R. (2001). Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect. Immun. 69, 5589–5596.PubMedCrossRefGoogle Scholar
  575. Zilly, A., Souza, C.G.M., Barbosa-Tessmann, I.P., and Peralta, R.M. (2002). Decolorization of industrial dyes by a Brazilian strain of Pleurotos pulmonarius producing laccase as the sole phenol-oxidizing enzyme. Folia Microbiol. 47, 273–277.CrossRefGoogle Scholar
  576. Zimmermann, R. (1958). Über phenolverwertende Hefen. Naturwiss enschaften 45, 165–166.CrossRefGoogle Scholar
  577. Zouari, N., Romette, J.L., and Thomas, D. (1994). Laccase electrode for the continuous-flow determination of phenolic-compounds. Biotechnol. Tech. 8, 503–508.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Frieder Schauer
    • 1
  • Rainer Borriss
    • 2
  1. 1.Institute of MicrobiologyE.-M.-Arndt-University GreifswaldGreifswaldGermany
  2. 2.Institute of BiologyHumboldt-University BerlinBerlinGermany

Personalised recommendations