Advertisement

Quantum Atomistic Simulations of Nanoelectronic Devices Using QuADS

  • Shaikh Ahmed
  • Krishnakumari Yalavarthi
  • Vamsi Gaddipati
  • Abdussamad Muntahi
  • Sasi Sundaresan
  • Shareef Mohammed
  • Sharnali Islam
  • Ramya Hindupur
  • Ky Merrill
  • Dylan John
  • Joshua Ogden
Chapter

Abstract

As semiconductor devices shrink into the nanoscale regime and new classes of nanodevices emerge, device performance is increasingly being dominated by the granularity in the underlying material and the quantum mechanical effects in the electronic states. At nanoscale, modeling and simulation approaches based on a continuum representation of the underlying material typically used by device engineers become invalid. On the other side, various ab initio materials science methods offer intellectual appeal, but can only model very small systems having ∼ 100 atoms. The variety of geometries, materials, and doping configurations in semiconductor devices at the nanoscale suggests that a general nanoelectronic modeling tool is needed. This paper describes our on-going efforts to develop a multiscale Quantum Atomistic Device Simulator (QuADS) to address these needs. QuADS bridges the gap (and crosses the intellectual boundary) between continuum and ab initio modeling paradigms and enable the quantum-corrected atomistic numerical modeling of non-equilibrium charge and phonon transport phenomena in realistically-sized systems containing more than 100 million atoms! QuADS is primarily being built upon extended versions of three modules: (a) Open source LAMMPS molecular dynamics code for geometry construction and modeling structural relaxations. To enhance accuracy, ab initio ABINIT tool is used for parameterization of force and polarization coefficients and model bandstructure calculations; (b) Open source NEMO 3-D tool, which employs a variety of tight-binding models (s, sp3s ∗ , sp3d5s ∗ ), for the calculation of excitonic and phonon spectra and optical transition rates; and (c) A quantum-corrected (benchmarked against the non-equilibrium Green function formalism) 3-D Monte Carlo electron–phonon transport kernel. Using QuADS, nanoelectronic device designers will be able to address many challenging issues including crystal atomicity, defects, interfaces and surfaces, strain relaxation, piezoelectric and pyroelectric polarization, quantum confinement, highly-interacting and dissipative current and phonon paths, and performance in harsh environments – all on an equal footing. With the multi-million atom handling capability, the simulator creates new engineering routes for optimizing the efficiency and reliability of nanoelectronic and optoelectronic devices that were previously infeasible. Successful applications of QuADS are demonstrated by three examples: (1) Effects of internal fields in InN/GaN quantum dots; (2) Importance of second order polarization in InAs/GaAs quantum dots; and (3) Modeling unintentional single charge effects in silicon nanowire FETs. QuADS uses several novel, memory-miserly, parallel and fast algorithms, and incorporates state-of-the-art fault-tolerant software design approaches, which enables the simulator to assess the reliability of available petaflop computing platforms (TeraGrid, NCCS, NICS). A web-based online interactive version for educational purposes will soon be available on http://www.nanoHUB.org

Keywords

Semiconductor device simulation Quantum effects Quantum dots  Solid-state lighting Nanowire Tight-binding Monte Carlo simulation Effective potential High-performance scientific computing QuADS 

Notes

Acknowledgment

This work is supported by the ORAU/ORNL High-Performance Computing Grant 2009. Computational resources supported by the National Science Foundation under Grant No. 0855221 and the Rosen Center for Advanced Computing (RCAC) at Purdue University are also acknowledged. The development of the NEMO 3-D tool involved a large number of individuals at JPL and Purdue University, whose work has been cited. Shaikh Ahmed would like to thank Gerhard Klimeck at Purdue University and Dragica Vasileska at Arizona State University for many useful discussions.

References

  1. 1.
    S. M. Sze and G. May, Fundamentals of Semiconductor Fabrication, John Wiley and Sons Inc., 2003.Google Scholar
  2. 2.
    G. Moore, “Progress in digital integrated electronics,” IEDM Tech. Digest, pp. 11–13, 1975.Google Scholar
  3. 3.
    Semiconductor Industry Association (SIA) International Technology Roadmap for Semiconductors 2009 (\url{http://www.itrs.net/Links/2009ITRS/Home2009.htm}).Google Scholar
  4. 4.
    Y. Wu et al. “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett., vol. 4, pp. 433–436, 2004.CrossRefGoogle Scholar
  5. 5.
    Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B, vol. 104, 5213, 2000.CrossRefGoogle Scholar
  6. 6.
    Y. Cui, Y. Zhong, Z. Wang, D. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, pp. 149–152, 2003.CrossRefGoogle Scholar
  7. 7.
    P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device”, Science, vol. 290, pp. 2282–2285, 2000.CrossRefGoogle Scholar
  8. 8.
    Y. Arakawa, H. Sasaki, “Multidimensional quantum well laser and temperature dependence of its threshold current” Appl. Phys. Lett., vol. 40, pp. 939, 1982.Google Scholar
  9. 9.
    E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots”, Phys. Rev. Lett., vol. 87, pp. 183601, 2001.CrossRefGoogle Scholar
  10. 10.
    M. Maximov, Y. Shernyakov, A. Tsatsul’nikov, A. Lunev, A. Sakharov, V. Ustinov, A. Egorov, A. Zhukov, A. Kovsch, P. Kop’ev, L. Asryan, A. Alferov, N. Ledentsov, D. Bimberg, A. Kosogov, P. Werner, “High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser”, J. Appl. Phys., vol. 83, pp. 5561, 1998.Google Scholar
  11. 11.
    B. Kane, “A Silicon-based Nuclear Spin Quantum Computer”, Nature, vol. 393, pp. 133, 1998.CrossRefGoogle Scholar
  12. 12.
    D. Loss, DP. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A, vol. 57, pp. 120, 1998.Google Scholar
  13. 13.
    M. Friesen, P. Rugheimer, D. Savage, M. Lagally, D. van der Weide, R. Joynt, M. Eriksson, “Practical design and simulation of silicon-based quantum-dot qubits”, Phys. Rev. B, vol. 67, 121301, 2003.CrossRefGoogle Scholar
  14. 14.
    S. Ahmed, M. Usman, C. Heitzinger, R. Rahman, A. Schliwa, and G. Klimeck, “Atomistic Simulation of Non-Degeneracy and Optical Polarization Anisotropy in Zincblende Quantum Dots,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Jan 2007, Bangkok, Thailand.Google Scholar
  15. 15.
    A. J. Williamson, L. W. Wang, and Alex Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B, vol. 62, 12963 – 12977, 2000.CrossRefGoogle Scholar
  16. 16.
    Olga L. Lazarenkova, Paul von Allmen, Fabiano Oyafuso, Seungwon Lee, and Gerhard Klimeck, “Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures”, Appl. Phys. Lett. vol. 85, 4193, 2004.CrossRefGoogle Scholar
  17. 17.
    Fabio Bernardini and Vincenzo Fiorentinia, “First-principles calculation of the piezoelectric tensor d of III–V nitrides,” Appl Phys. Lett., vol. 80, 22, pp. 4145–47, June 2002.Google Scholar
  18. 18.
    N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation,” Appl Phys. Lett., vol. 87, 231114, 2005.CrossRefGoogle Scholar
  19. 19.
    T. Saito, Y. Arakawa, “Electronic structure ofpiezoelectric In0:2Ga0:8N quantum dots in GaN calculated using a tight-binding method,” Physica E, vol. 15, 169–181, 2002.CrossRefGoogle Scholar
  20. 20.
    Momme Winkelnkemper, Andrei Schliwa, and Dieter Bimberg, “Interrelation of structural and electronic properties in \({\mathrm{In}}_{\mathrm{x}}{\mathrm{Ga}}_{1-\mathrm{x}}\mathrm{N/GaN}\) quantum dots using an eight-band k ∙ p model,” Phys. Rev. B, vol. 74, 155322, 2006.Google Scholar
  21. 21.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Phys. Rev. Lett., 50, 120–126, 1983.CrossRefGoogle Scholar
  22. 22.
    Karl D Brommer, M Needels, B.E. Larson, and J.D. Joannopoulous., Phys. Rev. Lett., vol. 68, 1355, 1992.Google Scholar
  23. 23.
    I.D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” Journal of Applied Physics, 75, 3, 1656–1666, 1994.CrossRefGoogle Scholar
  24. 24.
    Shaikh Ahmed, Neerav Kharche, Rajib Rahman, Muhammad Usman, Sunhee Lee, Hoon Ryu, Hansang Bae, Steve Clark, Benjamin Haley, Maxim Naumov, Faisal Saied, Marek Korkusinski, Rick Kennel, Michael Mclennan, Timothy B. Boykin, and Gerhard Klimeck, “Multimillion Atom Simulations with NEMO 3-D,” In Meyers, Robert (Ed.) Encyclopedia of Complexity and Systems Science, 6, 5745–5783. Springer New York 2009.Google Scholar
  25. 25.
  26. 26.
    APSYS User’s Manual 2005, http://www.crosslight.com
  27. 27.
  28. 28.
    Simone Chiaria, Enrico Furno, Michele Goano, and Enrico Bellotti, “Design Criteria for Near-Ultraviolet GaN-Based Light-Emitting Dioded”, special issue of IEEE Transactions on Electron Devices on LEDs, vol. 57, 1, pp. 60–70, January 2010.Google Scholar
  29. 29.
    C. Pryor, J. Kim, L.W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Apl. Phys., vol 83, 2548, 1998.CrossRefGoogle Scholar
  30. 30.
    Gabriel Bester and Alex Zunger, Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects, Phys. Rev. B 71 (2005) 045318.CrossRefGoogle Scholar
  31. 31.
    J. M. Jancu, F. Bassani, F. Della Sala, R. Scholz, Transferable tight-binding parametrization for the group-III nitrides, Appl. Phys. Lett. 81 (2002) 4838.CrossRefGoogle Scholar
  32. 32.
    G. Klimeck, S. Ahmed, N. Kharche, H. Bae, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T. B. Boykin, Atomistic simulation of realistically-sized nanodevices using NEMO 3-D, IEEE Trans. on Elect. Dev. 54 (2007) 2079–2099.CrossRefGoogle Scholar
  33. 33.
    S. Ahmed, S. Islam, and S. Mohammed, Electronic Structure of InN/GaN Quantum Dots: Multimillion Atom Tight-Binding Simulations, IEEE Trans. on Elect. Dev. 57 (2010) 164–173.CrossRefGoogle Scholar
  34. 34.
    S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1995.Google Scholar
  35. 35.
    D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, 1997.Google Scholar
  36. 36.
    S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.Google Scholar
  37. 37.
    E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, 1932.MATHCrossRefGoogle Scholar
  38. 38.
    P. Feynman and H. Kleinert, “Effective classical partition functions,” Phys. Rev. A, vol. 34, pp. 5080–5084, 1986.MathSciNetCrossRefGoogle Scholar
  39. 39.
    R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys., vol. 81, 7845, 1997.Google Scholar
  40. 40.
    A. Buin, A. Verma, A. Svizhenko and M. P. Anantram, “Enhancement of hole mobility in [110] Silicon Nanowires,” Nano Lett., vol. 8, p. 760—765, 2008.CrossRefGoogle Scholar
  41. 41.
    Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck, “Influence of vacancies on metallic nanotube transport performance”, Appl. Phys. Lett., vol. 90, 182119, 2007.Google Scholar
  42. 42.
    I. Knezevic, “Decoherence due to contacts in ballistic nanostructures,” Physical Review B, vol. 77, 125301, 2008.CrossRefGoogle Scholar
  43. 43.
    A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel and R. Venugopal, “Two Dimensional Quantum Mechanical Modeling of Nanotransistors,” J. Appl. Phys., vol. 91, p. 2343, 2002.CrossRefGoogle Scholar
  44. 44.
    Ming-Shan Jeng, Ronggui Yang, David Song, Gang Chen, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” Journal of Heat Transfer, vol. 130, 2008.Google Scholar
  45. 45.
    D. Donadio, G. Galli, “Atomistic simulations of heat transport in silicon nanowires,” Phys. Rev. Lett. 102, 195901, 13 May 2009.Google Scholar
  46. 46.
    G. Klimeck, F. Oyafuso, T. Boykin, R. Bowen, and P. von Allmen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Computer Modeling in Engineering and Science, 3, pp. 601, 2002.MATHGoogle Scholar
  47. 47.
    P. Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure”, Phys. Rev., vol. 145, 1966.Google Scholar
  48. 48.
    Benjamin P. Haley, Sunhee Lee, Mathieu Luisier, Hoon Ryu, Faisal Saied, Steve Clark, Hansang Bae, and Gerhard Klimeck, “Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB,” Journal of Physics: Conference Series, vol. 180, 012075, 2009. Also, http://cobweb.ecn.purdue.edu/~gekco/nemo3D/index.html
  49. 49.
  50. 50.
    E. Bellet-Amalric, C. Adelmann, E. Sarigiannidou, J. L. Rouvière, G. Feuillet, E. Monroy, and B. Daudin., “Plastic strain relaxation of nitride heterostructures,” J. Appl. Phys., vol. 95, 1127, 2004.Google Scholar
  51. 51.
    J. G. Lozano, A. M. Sánchez, R. García, D. González, M. Herrera, N. D. Browning, S. Ruffenach, and O. Briot, “Configuration of the misfit dislocation networks in uncapped and capped InN quantum dots,” Appl. Phys. Lett., vol. 91, 071915, 2007.CrossRefGoogle Scholar
  52. 52.
  53. 53.
    S. Ahmed, C. Ringhofer, D. Vasileska, “Parameter-Free Effective Potential Method for Use in Particle-Based Device Simulations,” IEEE Trans. Nanotech., vol. 4, pp. 465–471, July 2005.CrossRefGoogle Scholar
  54. 54.
    D. Vasileska and S. Ahmed, “Narrow-Width SOI Devices: The Role of Quantum Mechanical Size Quantization Effect and the Unintentional Doping on the Device Operation,” IEEE Trans. Elect. Dev., vol. 52, pp. 227–236, 2005.CrossRefGoogle Scholar
  55. 55.
    M. Nedjalkov, S. Ahmed, and D. Vasileska, “A self-consistent event biasing scheme for statistical enhancement,” J. Comp. Elect., vol. 3, pp. 305–309, 2004.CrossRefGoogle Scholar
  56. 56.
    P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, “Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells,” Phys. Rev. B, vol. 39, pp. 7852—7875, 1989.CrossRefGoogle Scholar
  57. 57.
    C. Jacoboni and L. Reggiani, ‘The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Rev. Modern Phys., vol. 55, pp. 645–705, 1983.CrossRefGoogle Scholar
  58. 58.
    M. Fischetti, and S. Laux, “Monte Carlo study of electron transport in silicon inversion layers,” Phys. Rev. B, vol. 48, pp. 2244–2274, 1993.CrossRefGoogle Scholar
  59. 59.
    M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000.Google Scholar
  60. 60.
    K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993.Google Scholar
  61. 61.
    J. Bude, “Scattering mechanisms for semiconductor transport calculations,” Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publishers, pp. 27–66, 1991.Google Scholar
  62. 62.
  63. 63.
  64. 64.
    FA Ponce and DP Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, 386, 351–359, 1997.Google Scholar
  65. 65.
    H. Morkoç, and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science, vol. 267, pp. 51–55, 1995.CrossRefGoogle Scholar
  66. 66.
    S. Ruffenach, B. Maleyre, O. Briot, B. Gil, “Growth of InN quantum dots by MOVPE,” physica status solidi (c), vol. 2, 826–832, 2005.Google Scholar
  67. 67.
    W. Ke, C. Fu, C. Chen, L. Lee, C. Ku, W. Chou, W.-H Chang, M. Lee, W. Chen, and W. Lin, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett., vol. 88, 191913, 2006.Google Scholar
  68. 68.
    J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology, vol. 21, 015204, 2010.CrossRefGoogle Scholar
  69. 69.
    H. Wang, D. Jiang, J. Zhu, D. Zhao, Z. Liu, Y. Wang, S. Zhang, and Yang, H, “Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition,” J. Phys. D, vol. 42, 145410, 2009.CrossRefGoogle Scholar
  70. 70.
    X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, 3971, 2004.CrossRefGoogle Scholar
  71. 71.
    R. Stevenson, “The world’s best gallium nitride,” IEEE Spectrum, vol. 47, 40–45, 2010.CrossRefGoogle Scholar
  72. 72.
    J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, “Polarized photoluminescence and absorption in A-plane InN films,” Appl. Phys. Lett., vol. 89, 151910, 2006.CrossRefGoogle Scholar
  73. 73.
    P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865–868, 2000.CrossRefGoogle Scholar
  74. 74.
    A. Jarjour, R. Taylor, R. Oliver, M. Kappers, C. Humphreys, and A. Tahraoui, “Electrically driven single InGaN/GaN quantum dot emission,” Appl. Phys. Lett., vol. 93, 233103, 2008.CrossRefGoogle Scholar
  75. 75.
    M. Senes, K. Smith, T. Smeeton, S. Hooper, and J. Heffernan, “Strong carrier confinement in InGaN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B, vol. 75, 045314, 2007.CrossRefGoogle Scholar
  76. 76.
    Gabriel Bester, Xifan Wu, David Vanderbilt, and Alex Zunger, “Importance of second-order piezoelectric effects in zincblende semiconductors,” Phys. Rev. Lett., vol. 96, 187602, 2006.Google Scholar
  77. 77.
    Gabriel Bester, Alex Zunger, Xifan Wu, and David Vanderbilt, “Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots,” Phys. Rev. B, vol. 74, 081305, 2006.Google Scholar
  78. 78.
    C. Wei, Y. Jiang, Y. Z. Xiong, X. Zhou, N. Singh, S. C. Rustagi, G. Q. Lo, and D. Lee Kwong, “Impact of Gate Electrodes on 1/f Noise of Gate-All-Around Silicon Nanowire Transistors,” IEEE Elect. Dev. Lett., vol. 30, No. 10, October 2009.Google Scholar
  79. 79.
    Z. Jing, R. Wang, R. Huang, Y. Tian, L. Zhang, D. W. Kim, D. Park, and Y. Wang, “Investigation of low-frequency noise in silicon nanowire MOSFETs,” IEEE Elect. Dev. Lett., vol. 30, no. 1, pp. 57–60, Jan. 2009.CrossRefGoogle Scholar
  80. 80.
    nanowire simulator at http://nanohub.org/tools/nanowire/. Accessed on March 21, 2010.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shaikh Ahmed
    • 1
  • Krishnakumari Yalavarthi
  • Vamsi Gaddipati
  • Abdussamad Muntahi
  • Sasi Sundaresan
  • Shareef Mohammed
  • Sharnali Islam
  • Ramya Hindupur
  • Ky Merrill
  • Dylan John
  • Joshua Ogden
  1. 1.Department of Electrical and Computer EngineeringSouthern Illinois University at CarbondaleCarbondaleUSA

Personalised recommendations