Skip to main content

Quantum and Coulomb Effects in Nano Devices

  • Chapter
  • First Online:
Nano-Electronic Devices

Abstract

In state of the art devices, it is well known that quantum and Coulomb effects play significant role on the device operation. In this book chapter we demonstrate that a novel effective potential approach in conjunction with a Monte Carlo device simulation scheme can accurately capture the quantum-mechanical size quantization effects. Inclusion of tunneling within semi-classical simulation schemes is discussed in details. We also demonstrate, via proper treatment of the short-range Coulomb interactions, that there will be significant variation in device design parameters for devices fabricated on the same chip due to the presence of unintentional dopant atoms at random locations within the channel of alternative technology devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Hansch, Th. Vogelsang, R. Kirchner and M. Orlowski., “Carrier Transport Near the Si/SiO2 Interface of a MOSFET”, Solid State Elec., vol 32, no. 10, pp. 839–849, Oct. 1989.

    Google Scholar 

  2. M.J. Van Dort, PH. Woerlee and AJ. Walker, “A Simple Model for Quantization Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions.”, Solid State Elec., vol. 37, no. 3, pp. 411–415, Mar. 1994.

    Google Scholar 

  3. F. F. Fang and W. E. Howard, “Negative Field-Effect Mobility on (100) Si Surfaces”, Phys. Rev. Lett., vol. 16, no. 18, pp. 797–799, May. 1966.

    Google Scholar 

  4. B. Winstead and U. Ravaioli, “Simulation of Schottky barrier MOSFET’s with a coupled quantum injection/Monte Carlo technique,” IEEE Trans. Electron Devices, vol. 47, no. 6, pp. 1241–1246, Jun. 2000.

    Article  Google Scholar 

  5. R. W. Keyes, “The effect of randomness in the distribution of impurity atoms on FET thresholds,” Appl. Phys., vol. 8, no. 3, pp. 251–259, Jun. 1975.

    Article  Google Scholar 

  6. T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold voltage fuctuation due to statistical variation of channel dopant number in MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 2216–2221, Nov. 1994.

    Article  Google Scholar 

  7. H. S. Wong and Y. Taur, “Three dimensional ‘atomistic’ simulation of discrete random dopant distribution effects in sub-0.1 mm MOSFET’s, in IEDM Tech. Dig., pp. 705–708, Dec. 1993.

    Google Scholar 

  8. W. J. Gross, D. Vasileska, and D. K. Ferry, “3-D Simulations of ultrasmall MOSFET’s with real-space treatment of the electron–electron and electron–ion interactions,” VLSI Design, vol. 10, pp. 437–452, no. 4, 2000.

    Google Scholar 

  9. A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs: A 3D ‘atomistic’ simulation,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505–2513, Dec. 1988.

    Google Scholar 

  10. William J. Gross, Ph. D. Dissertation, Arizona State University, Dec. 2000.

    Google Scholar 

  11. N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “Role of longrange and short-range Coulomb potentials in threshold characteristics under discrete dopants in sub-0.1um Si-MOSFETs,” IEDM Tech., Dig., pp. 275–283, Dec. 2000.

    Google Scholar 

  12. D. K. Ferry, A. M. Kriman, M. J. Kann, and R. P. Joshi, “Molecular dynamics extensions of Monte Carlo simulation in semiconductor device modeling”, Comp. Phys. Comm., vol. 67, no. 1, pp. 119–134, Aug. 1991.

    Article  MATH  Google Scholar 

  13. L. R. Logan and J. L. Egley, “Dielectric response in p-type silicon: Screening and band-gap narrowing”, Phys. Rev. B, vol. 47, no. 19, pp. 12532–12539, May. 1993.

    Google Scholar 

  14. C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Device Simulation.”, Vienna, Austria: Springer-Verlag, 1989.

    Google Scholar 

  15. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous and A. R. leBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions”, IEEE J. Solid-State Circuits, vol. 9, pp. 256, 1974.

    Google Scholar 

  16. J. R. Brews, W. Fichtner, E. H. Nicollian and S. M. Sze, “Generalized guide for MOSFET miniaturization”, IEEE Electron Dev. Lett., vol 1, no. 2, pp. 2, Jan. 1980.

    Google Scholar 

  17. G. Bacarani and M. R. Worderman, “Transconductance degradation in thin-Oxide MOSFET’s”, Electron Devices Meeting, pp. 278–281, (1982).

    Google Scholar 

  18. M.-S. Liang, J. Y. Choi, P.-K. Ko and C. Hu, “Inversion-Layer Capacitance and Mobility of Very Thin Gate-Oxide MOSFET’s”, IEEE Trans. Electron Devices, vol. 33, no. 3, pp. 409–413, Mar. 1986.

    Article  Google Scholar 

  19. A. Hartstein and N. F. Albert, “Determination of the inversion-layer thickness from capacitance measurements of metal-oxide-semiconductor field-effect transistors with ultrathin oxide layers”, Phys. Rev. B, vol. 38, no. 2, pp. 1235–1240, Jul. 1988.

    Article  Google Scholar 

  20. M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs”, IEEE Trans. Electron Dev., vol. 39, no. 4, pp. 932–938, 1992.

    Article  Google Scholar 

  21. M. J. van Dort, P. H. Woerlee and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions”, Solid-State Electronics 37, 411 (1994).

    Google Scholar 

  22. D. Vasileska, and D.K. Ferry, “The influence of space quantization effects on the threshold voltage, inversion layer and total gate capacitance in scaled Si-MOSFETs,” Technical Proceedings of the First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, California, pp. 408–413, Apr. 1998.

    Google Scholar 

  23. S. Takagi and A. Toriumi, “Quantitative understanding of inversion-layer capacitance in Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 42, no. 12, pp. 2125–2130, Dec. 1995.

    Article  Google Scholar 

  24. S. A. Hareland, S. Krishnamurthy, S. Jallepali, C. F. Yeap, K. Hasnat, A. F. Tasch Jr. and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs”, IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 90–96, Jan. 1996.

    Article  Google Scholar 

  25. D. Vasileska, D. K. Schroder and D. K. Ferry, “Scaled silicon MOSFETs: degradation of the total gate capacitance”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 584–587, 1997.

    Article  Google Scholar 

  26. K. S. Krisch, J. D. Bude and L. Manchanda, “Gate capacitance attenuation in MOS devices with thin gate dielectrics”, IEEE Electron Dev. Lett, vol. 17, no. 11, pp. 521–524, Nov. 1996.

    Article  Google Scholar 

  27. L. de Broglie, C. R. Acad. Sci. Paris, vol. 183, 447, 1926.

    Google Scholar 

  28. L. de Broglie, C. R. Acad. Sci. Paris, vol. 184, 273, 1927.

    Google Scholar 

  29. E. Madelung, “Quantum theory in hydrodynamical form”, Z. Phys., 40, 322, 1926.

    Google Scholar 

  30. D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I”, Phys. Rev., 85, no. 2, 166–179, Jan. 1952.

    Google Scholar 

  31. D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables. II”, Phys. Rev., Vol. 85, 180 (1952).

    Google Scholar 

  32. C. Dewdney and B. J. Hiley, “A Quantum Potential Description of One-Dimensional Time-Dependant Scattering From Square Barriers and Square Wells”, Found. Phys., vol. 12, no. 1, pp. 27–48, Jan. 1982.

    Article  Google Scholar 

  33. G. J. Iafrate, H. L. Grubin, and D.K Ferry, “Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport”, Journal de Physique., vol. 42 (Colloq. 7), 10, 307–312, Oct. 1981.

    Google Scholar 

  34. E. Wigner, “On the Quantum Correction For Thermodynamic Equilibrium”, Phys. Rev., vol. 40, no. 5, pp. 749–759, Jun. 1932.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. K. Ferry and J.-R. Zhou, “Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling”, Phys. Rev. B., vol. 48, no. 11, pp. 7944–7950, Sep. 1993.

    Article  Google Scholar 

  36. P. Feynman and H. Kleinert, “Effective classical partition functions”, Phys. Rev. A, 34, no. 6, pp. 5080–5084, Dec. 1986.

    Google Scholar 

  37. C. L. Gardner and C. Ringhofer, “Smooth quantum potential for the hydrodynamic model”, Phys. Rev. E, vol. 53, no. 1, pp. 157–166, Jan. 1996.

    Article  Google Scholar 

  38. C. Ringhofer and C. L. Gardner, “Smooth quantum hydrodynamic model simulation of the resonant tunneling diode”, VLSI Design, vol. 8, 1–4, 143–146, 1998.

    Google Scholar 

  39. D. Vasileska and S. S. Ahmed, “Narrow-Width SOI Devices: The Role of Quantum–Mechanical Size Quantization Effect and Unintentional Doping on the Device Operation”, IEEE Trans. Electron Devices, vol. 52, no. 2, pp. 227–236, Feb. 2005.

    Article  Google Scholar 

  40. D. K. Ferry, “The onset of quantization in ultra-submicron semiconductor devices”, Superlattices and Microstructures, vol. 27, no. 2–3, pp. 61–66, Jan. 2000.

    Article  Google Scholar 

  41. C. Ringhofer, S. Ahmed and D. Vasileska, “An effective potential approach to modeling 25 nm MOSFET devices”, Journal of Computational Electronics, vol. 2, pp. 113–117, 2003.

    Article  Google Scholar 

  42. C. Ringhofer, C. Gardner and D. Vasileska, “Effective potentials and quantum fluid models: a thermodynamic approach”, Inter. J. on High Speed Electronics and Systems, vol. 13, no. 3, pp. 771–804, Jan. 2003.

    Article  Google Scholar 

  43. Shaikh Shahid Ahmed, “Quantum and Coulomb Effects in Nanoscale Devices”, Ph. D. Dissertation, Arizona State University, Dec. 2004.

    Google Scholar 

  44. R. Akis, S. Milicic, D. K. Ferry, D. Vasileska, “An Effective Potential Method for Including Quantum Effects Into the Simulation of Ultra-Short and Ultra-Narrow Channel MOSFETs”, Proceedings of the 4th International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, SC, pp. 550–3, Mar. 2001.

    Google Scholar 

  45. C. Ringhofer, S. S. Ahmed and D. Vasileska, “Effective potential approach to modeling of 25 nm MOSFET devices”, Superlattices and Microstructures, vol. 34, no. 3–6, pp. 311–317, 2003.

    Article  Google Scholar 

  46. http://www.intel.com

  47. Y. Omura, S. Horiguchi, M. Tabe, and K. Kishi, “Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs”, IEEE Elec. Device Lett., vol. 14, no. 12, pp. 569–571, Dec. 1993.

    Article  Google Scholar 

  48. S. M. Ramey and D. K. Ferry, “Implementation of surface roughness scattering in Monte Carlo modeling of thin SOI MOSFETs using the effective potential”, IEEE Transactions on Nanotechnology, vol. 2, no. 2, pp. 110–114, Jun. 2003.

    Article  Google Scholar 

  49. S. Hasan, J. Wang, and M. Lundstrom, “Device design and manufacturing issues for 10 nm-scale MOSFETs: a computational study”, Solid–State Elect, vol. 48, no. 6, pp. 867–875, 2004.

    Google Scholar 

  50. S. Datta, “Electronic Transport in Mesoscopic Systems”, Cambridge Studies in Semiconductor Physics Series, ISBN 0-521-59943-1, paperback, 1998.

    Google Scholar 

  51. D. Vasileska, S. M. Goodnick and Gerhard Klimeck, Computational Electronics: Semiclassical and Quantum Transport Modeling, CRC Press, June 2010.

    Google Scholar 

  52. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev., vol. 136, no. 3b, B864-B871, Nov. 1964.

    Article  MathSciNet  Google Scholar 

  53. Kohn, and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., vol. 140, no. 4a, pp. A1133–A1138, Nov. 1965.

    Google Scholar 

  54. L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials”, J. Phys. C, vol. 4, no. 14, pp. 2064–2082, Mar. 1971.

    Article  Google Scholar 

  55. C. Hu, S. Banerjee, k. Sadra, B.G. Streetman and R. Sivan, “Quantization Effects in Inversion Layers of PMOSFET’s on Si (100) Substrates”, IEEE Electron Dev. Lett., vol. 17, no. 6, pp. 276–278, Jun. 1996

    Google Scholar 

  56. S. Takagi, M. Takayanagi, and A. Toriumi, “Characterization of Inversion-Layer Capacitance of Holes in Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1446–1450, Jul. 1999.

    Article  Google Scholar 

  57. D. Vasileska, D. K. Schroder and D.K. Ferry, “Scaled silicon MOSFET’s: Part II-Degradation of the total gate capacitance”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 584–587, Apr. 1997.

    Article  Google Scholar 

  58. D. Vasileska, and D.K. Ferry, “The influence of space quantization effects on the threshold voltage, inversion layer and total gate capacitance in scaled Si-MOSFETs”, Technical Proceedings of the First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, California, vol. 10, no. 2, pp. 408–413, Apr. 1998.

    Google Scholar 

  59. J. Fossum, Z. Ren, K. Kim and M. Lundstrom “Extraordinarily High Drive Currents in Asymmetrical Double-Gate MOSFETs”, Superlattices and Microstructures, vol. 28, no. 5–6, pp. 525–530, Jun. 2000.

    Article  Google Scholar 

  60. J. P. Colinge, X. Baie, V. Bayot, and E. Grivei, “A silicon-on-insulator quantum wire,” Solid-State Electron., vol. 39, no. 1, pp. 49–51, Jan. 1996.

    Article  Google Scholar 

  61. X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Sub 50-nm FinFET: PMOS,” in IEDM Tech. Dig., pp. 67–70, Dec. 1999.

    Google Scholar 

  62. Z. Jiao and C. A. T. Salama, “A fully depleted _-channel SOI nMOSFET,” Electrochem. Soc. Proc., vol. 3, pp. 403–408, 2001.

    Google Scholar 

  63. J. P. Coolinge, M. H. Gao, A. Romano, H. Maes, and C. Claeys, “Silicon- on-insulator “gate-all-around” MOS device,” SOI Conf. Dig., pp. 137–138, 1990.

    Google Scholar 

  64. D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, “A fully depleted lean-channel transistor (DELTA)—A novel vertical ultra-thin SOI MOSFET,” in IEDM Tech. Dig., pp. 833–836, Dec. 1989.

    Google Scholar 

  65. C. P. Auth and J. D. Plummer, “A simple model for threshold voltage of surrounding-gate MOSFETs,”, IEEE Trans. Electron Devices, vol. 45, no.11, pp. 2381–2383, Nov. 1998.

    Article  Google Scholar 

  66. T. Sekigawa and Y. Hayashi, “Calculated threshold voltage characteristics of an XMOS transistor having an additional bottom gate,” Solid- State Electron., vol. 27, no. 8–9, pp. 827–828, Jan. 1984.

    Article  Google Scholar 

  67. A. Rahman, M. S. Lundstrom, and A. W. Ghosh, “Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers”, Journal of applied physics, vol. 97, no. 5, pp. 053702–053714, Feb. 2005.

    Article  Google Scholar 

  68. A. Rahman, “Exploring new channel materials for nanoscale CMOS devices: A simulation approach”, Ph.D. Dissertation, Purdue University.

    Google Scholar 

  69. I. H. Tan, G.L. Snider, L. D. Chang and E. L. Hu, “A self-consistent Solution of Schrödinger–Poisson Equations using a Non-uniform Mesh,” J. Appl. Phys., vol. 68, pp. 4071–4076, Oct. 1990.

    Article  Google Scholar 

  70. T. Yang, Y. Liu, P.D. Ye, Y. Xuan, H. Pal, M. S. Lundstrom, “Inversion Capacitance-Voltage Studies on GaAs Metal-Oxide-Semiconductor Structure using Transparent Conducting Oxide as Metal Gate”, Applied Physics Letters, vol. 92, pp. 252105–252108, Jun. 2008.

    Article  Google Scholar 

  71. F. Gilibert, D. Rideau, F. Payet, F. Boeuf, E. Batail, M. Minondo, R. Bouchakour, T. Skotnicki, H. Jaouen, “Strained Si/SiGe MOSFET capacitance modeling based on band structure analysis”, Proceedings of the 35th European Solid State Device Research Conference (ESSDERC’2005), Grenoble, no. 12–16, pp. 281–284, Sep. 2005.

    Google Scholar 

  72. L. Rayleigh, “On the propagation of waves through a stratified medium, with special reference to the question of reflection”, Proc. Roy. Soc. A, vol. 86, no. 586, pp. 207, 1912.

    Google Scholar 

  73. ET. Jaynes. Probability Theory: The Logic of Science, Cambridge University Press, (2003).

    Google Scholar 

  74. Usuki T., Saito M., Takatsu M., Kiehl R.A., Yokoyama N.:Numerical analysis of electron wave detection by a wedge shaped point contact. Phys. Rev. B 520, 7615–7625 (1994).

    Google Scholar 

  75. Datta S.: Nanoscale device modeling: the Green’s function method. Superlattices and Microstuctures 28, 253–278 (2000).

    Google Scholar 

  76. D. K. Ferry, Quantum Mechanics for Electrical Engineers, IOP Press (2000).

    Google Scholar 

  77. C. B. Duke, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich ∼ Academic, New York, 1969!

    Google Scholar 

  78. W. W. Lui and M. Fukuma “Exact solution of the Schrödinger equation across an arbitrary one-dimensional piecewise-linear potential barrier” J. Appl. Phys. 60, 1555–1559 (1986).

    Google Scholar 

  79. T. Mizuno, J. Okamura and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s”, IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 2216–2221, Nov. 1994.

    Article  Google Scholar 

  80. T. Mizuno, “Influence of Statistical Spatial-Nonuniformity of Dopant Atoms on Threshold Voltage in a System of Many MOSFETs”, Jpn. J. Appl. Phys, vol. 35, pp. 842–848, Jan. 1996.

    Article  Google Scholar 

  81. J. T. Horstmann, U. Hilleringmann and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 299–306, Jan. 1998.

    Article  Google Scholar 

  82. P. A. Stolk, F. P. Widdershoven and D. B. M. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”, IEEE Trans. Electron Devices, vol. 45, pp. 1960–1971, Sep. 1998.

    Article  Google Scholar 

  83. K. Nishinohara, N. Shigyo and T. Wada, “Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage”, IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 634–639, Mar. 1992.

    Article  Google Scholar 

  84. J.-R. Zhou and D. K. Ferry, “3D simulation of deep-submicron devices. How impurity atoms affect conductance”, IEEE Comput. Science and Eng., vol. 2, no. 2, pp. 30–36, May. 1995.

    Google Scholar 

  85. D. Vasileska, W. J. Gross, V. Kafedziski and D. K. Ferry, “Continuity Equations for Scaled Si MOSFETs”, VLSI Design, vol. 8, no. 1–4, pp. 301, 1998.

    Google Scholar 

  86. D. Vasileska, W. J. Gross and D. K. Ferry, “Modeling of deep-submicrometer MOSFETs: random impurity effects, threshold voltage shifts and gate capacitance attenuation”, Extended Abstracts IWCE-6, Osaka, IEEE Cat. No. 98EX116, pp. 259–262, 1998.

    Google Scholar 

  87. X. Tang, V. K. De and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement”, IEEE Trans. on VLSI Systems, vol. 5, no. 4, pp. 369–376, Dec. 1997.

    Article  Google Scholar 

  88. P. Lugli and D. K. Ferry, “Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors”, IEEE Trans. Electron Dev., vol. 32, no. 11, pp. 2431–2437, Nov. 1985.

    Article  Google Scholar 

  89. A. M. Kriman, M. J. Kann, D. K. Ferry and R. Joshi, “Role of the exchange interaction in the short-time relaxation of a high-density electron plasma”, Phys. Rev. Lett., vol. 65, no. 13, pp. 1619–1622, Sep. 1990.

    Article  Google Scholar 

  90. W. J. Gross, D. Vasileska, and D. K. Ferry, “3 D simulations of ultra-small MOSFETs with real-space treatment of the electron-electron and electron-ion interactions”, VLSI Design, vol. 10, no. 4, pp. 437-, 2000.

    Google Scholar 

  91. D. Vasileska, W. J. Gross, and D. K. Ferry, “Monte Carlo particle-based simulations of deep-submicron n-MOSFETs with real-space treatment of electron-electron and electron-impurity interactions”, Superlattices and Microstructures, vol. 27, no. 2–3, pp. 147–157, Feb. 2000.

    Article  Google Scholar 

  92. A. Asenov, “Random dopant induced threshold voltage lowering and fuctuations in sub 0. 1μm MOSFETs: A 3-D ‘atomistic’ simulation study”, IEEE Trans. Electron Dev., vol. 45, no. 12, pp. 2505–2513, Dec. 1998.

    Google Scholar 

  93. A. Asenov and S. Saini, “Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm MOSFET’s with epitaxial and δ-doped channels”, IEEE Trans. Electron Dev., vol. 46, no. 8, pp. 1718–1724, Aug. 1999.

    Google Scholar 

  94. L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations ∗ 1,  ∗ 2”, J. Comput. Phys., vol. 135, no. 2, pp. 280–292, Aug 1997.

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Beatson and L. Greengard, “A short course on fast multipole methods,”, Wavelets, Multilevel Methods and Elliptic PDEs (Leicester, 1996), ser. Numer. Math. Sci. Comput. New York: Oxford Univ. Press, pp. 1–37, 1997.

    Google Scholar 

  96. H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm in three dimensions”, J. Comput. Phys., vol. 155, no. 2, pp. 468–498, Aug. 1999.

    Article  MathSciNet  MATH  Google Scholar 

  97. FMMPART3D user’s guide, version 1.0 ed., MadMax Optics, Hamden, CT, USA.

    Google Scholar 

  98. R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles”, New York, McGraw-Hill, 1981.

    Google Scholar 

  99. C. J. Wordelman and U. Ravaioli, “Integration of a particle-particle-particle-mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices”, IEEE Tran. Electron Devices, vol. 47, no. 2, pp. 410–416, Feb. 2000.

    Article  Google Scholar 

  100. W. J. Gross, D. Vasileska, and D. K. Ferry, “Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics”, IEEE Electron Devices, vol. 47, no. 10, pp. 1831–1837, Oct. 2000.

    Article  Google Scholar 

  101. Allen, D. Holberg, “CMOS Analog Circuit Design”, Saunders College Publishing, New York, 1987.

    Google Scholar 

  102. Bohr, Y., A. El-Mansy, “Technology for advanced high-performance microprocessors”,IEEE Trans. Electron Dev., vol. 45, no. 3, pp. 620–625, Mar. 1998.

    Google Scholar 

  103. SIA Technology Roadmap of Semiconductors: http://www.itrs.net/

    Google Scholar 

  104. E. H. Nicollian and A. Goetzberger, “The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique”, Bell Syst. Techn. J., vol. 46, no. 6, pp. 1055–1133, 1967.

    Google Scholar 

  105. J. T. Horstmann, U. Hilleringmann and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 299–306, Jan. 1998.

    Article  Google Scholar 

  106. P. A. Stolk, F. P. Widdershoven and D. B. M. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 1960–1971, Sep. 1998.

    Article  Google Scholar 

  107. W. J. Gross, D. Vasileska and D. K. Ferry, “Three-dimensional simulations of ultrasmall metal–oxide–semiconductor field-effect transistors: The role of the discrete impurities on the device terminal characteristics”, Journal of Applied Physics, vol. 91, no. 6, pp. 3737–3740, Mar. 2002.

    Article  Google Scholar 

  108. H. Majima, H. Ishikuro, and T. Hiramoto, “Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET’s”, IEEE Electron Dev. Lett., vol. 21, no. 8, pp. 396–398, Aug. 2000.

    Article  Google Scholar 

  109. H.R. Khan, D. Vasileska, S.S. Ahmed, C. Ringhofer and C. Heitzinger, “Modeling of FinFETs: 3D MC Simulation Using FMM and Unintentional Doping Effects on Device Operation”, Journal of Computational Electronics, Vol. 3, Nos. 3–4, pp. 337–340 (2005).

    Google Scholar 

  110. L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu,“Gate length scaling and threshold voltage control of double-gate MOSFETs,” IEDM Tech. Dig., vol. 6, pp. 719–722, Dec. 2000.

    Google Scholar 

  111. Clemens Heitzinger, Christian Ringhofer, Shaikh Ahmed and Dragica Vasileska, “3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions”, DOI 10.1007/s10825-006-0058-x, Journal of Computational Electronics, Volume 6, Numbers 1—3/September, pp. 15—18, 2007.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from the National Science Foundation under Contract Number ECCS 0901251: Modeling Heating Effects in Low-Power Multi-Gate SOI Devices and High-Power GaN HEMTs. Program Director: Paul Werbos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragica Vasileska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vasileska, D., Khan, H.R., Ahmed, S.S., Kannan, G., Ringhofer, C. (2011). Quantum and Coulomb Effects in Nano Devices. In: Vasileska, D., Goodnick, S. (eds) Nano-Electronic Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8840-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8840-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8839-3

  • Online ISBN: 978-1-4419-8840-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics