Quantum and Coulomb Effects in Nano Devices

  • Dragica Vasileska
  • Hasanur Rahman Khan
  • Shaikh Shahid Ahmed
  • Gokula Kannan
  • Christian Ringhofer
Chapter

Abstract

In state of the art devices, it is well known that quantum and Coulomb effects play significant role on the device operation. In this book chapter we demonstrate that a novel effective potential approach in conjunction with a Monte Carlo device simulation scheme can accurately capture the quantum-mechanical size quantization effects. Inclusion of tunneling within semi-classical simulation schemes is discussed in details. We also demonstrate, via proper treatment of the short-range Coulomb interactions, that there will be significant variation in device design parameters for devices fabricated on the same chip due to the presence of unintentional dopant atoms at random locations within the channel of alternative technology devices.

Keywords

Nanoscale devices Quantum confinement SCHRED Random dopants 

Notes

Acknowledgements

We would like to thank the financial support from the National Science Foundation under Contract Number ECCS 0901251: Modeling Heating Effects in Low-Power Multi-Gate SOI Devices and High-Power GaN HEMTs. Program Director: Paul Werbos.

References

  1. 1.
    W. Hansch, Th. Vogelsang, R. Kirchner and M. Orlowski., “Carrier Transport Near the Si/SiO2 Interface of a MOSFET”, Solid State Elec., vol 32, no. 10, pp. 839–849, Oct. 1989.Google Scholar
  2. 2.
    M.J. Van Dort, PH. Woerlee and AJ. Walker, “A Simple Model for Quantization Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions.”, Solid State Elec., vol. 37, no. 3, pp. 411–415, Mar. 1994.Google Scholar
  3. 3.
    F. F. Fang and W. E. Howard, “Negative Field-Effect Mobility on (100) Si Surfaces”, Phys. Rev. Lett., vol. 16, no. 18, pp. 797–799, May. 1966.Google Scholar
  4. 4.
    B. Winstead and U. Ravaioli, “Simulation of Schottky barrier MOSFET’s with a coupled quantum injection/Monte Carlo technique,” IEEE Trans. Electron Devices, vol. 47, no. 6, pp. 1241–1246, Jun. 2000.CrossRefGoogle Scholar
  5. 5.
    R. W. Keyes, “The effect of randomness in the distribution of impurity atoms on FET thresholds,” Appl. Phys., vol. 8, no. 3, pp. 251–259, Jun. 1975.CrossRefGoogle Scholar
  6. 6.
    T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold voltage fuctuation due to statistical variation of channel dopant number in MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 2216–2221, Nov. 1994.CrossRefGoogle Scholar
  7. 7.
    H. S. Wong and Y. Taur, “Three dimensional ‘atomistic’ simulation of discrete random dopant distribution effects in sub-0.1 mm MOSFET’s, in IEDM Tech. Dig., pp. 705–708, Dec. 1993.Google Scholar
  8. 8.
    W. J. Gross, D. Vasileska, and D. K. Ferry, “3-D Simulations of ultrasmall MOSFET’s with real-space treatment of the electron–electron and electron–ion interactions,” VLSI Design, vol. 10, pp. 437–452, no. 4, 2000.Google Scholar
  9. 9.
    A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs: A 3D ‘atomistic’ simulation,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505–2513, Dec. 1988.Google Scholar
  10. 10.
    William J. Gross, Ph. D. Dissertation, Arizona State University, Dec. 2000.Google Scholar
  11. 11.
    N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “Role of longrange and short-range Coulomb potentials in threshold characteristics under discrete dopants in sub-0.1um Si-MOSFETs,” IEDM Tech., Dig., pp. 275–283, Dec. 2000.Google Scholar
  12. 12.
    D. K. Ferry, A. M. Kriman, M. J. Kann, and R. P. Joshi, “Molecular dynamics extensions of Monte Carlo simulation in semiconductor device modeling”, Comp. Phys. Comm., vol. 67, no. 1, pp. 119–134, Aug. 1991.MATHCrossRefGoogle Scholar
  13. 13.
    L. R. Logan and J. L. Egley, “Dielectric response in p-type silicon: Screening and band-gap narrowing”, Phys. Rev. B, vol. 47, no. 19, pp. 12532–12539, May. 1993.Google Scholar
  14. 14.
    C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Device Simulation.”, Vienna, Austria: Springer-Verlag, 1989.Google Scholar
  15. 15.
    R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous and A. R. leBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions”, IEEE J. Solid-State Circuits, vol. 9, pp. 256, 1974.Google Scholar
  16. 16.
    J. R. Brews, W. Fichtner, E. H. Nicollian and S. M. Sze, “Generalized guide for MOSFET miniaturization”, IEEE Electron Dev. Lett., vol 1, no. 2, pp. 2, Jan. 1980.Google Scholar
  17. 17.
    G. Bacarani and M. R. Worderman, “Transconductance degradation in thin-Oxide MOSFET’s”, Electron Devices Meeting, pp. 278–281, (1982).Google Scholar
  18. 18.
    M.-S. Liang, J. Y. Choi, P.-K. Ko and C. Hu, “Inversion-Layer Capacitance and Mobility of Very Thin Gate-Oxide MOSFET’s”, IEEE Trans. Electron Devices, vol. 33, no. 3, pp. 409–413, Mar. 1986.CrossRefGoogle Scholar
  19. 19.
    A. Hartstein and N. F. Albert, “Determination of the inversion-layer thickness from capacitance measurements of metal-oxide-semiconductor field-effect transistors with ultrathin oxide layers”, Phys. Rev. B, vol. 38, no. 2, pp. 1235–1240, Jul. 1988.CrossRefGoogle Scholar
  20. 20.
    M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs”, IEEE Trans. Electron Dev., vol. 39, no. 4, pp. 932–938, 1992.CrossRefGoogle Scholar
  21. 21.
    M. J. van Dort, P. H. Woerlee and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions”, Solid-State Electronics 37, 411 (1994).Google Scholar
  22. 22.
    D. Vasileska, and D.K. Ferry, “The influence of space quantization effects on the threshold voltage, inversion layer and total gate capacitance in scaled Si-MOSFETs,” Technical Proceedings of the First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, California, pp. 408–413, Apr. 1998.Google Scholar
  23. 23.
    S. Takagi and A. Toriumi, “Quantitative understanding of inversion-layer capacitance in Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 42, no. 12, pp. 2125–2130, Dec. 1995.CrossRefGoogle Scholar
  24. 24.
    S. A. Hareland, S. Krishnamurthy, S. Jallepali, C. F. Yeap, K. Hasnat, A. F. Tasch Jr. and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs”, IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 90–96, Jan. 1996.CrossRefGoogle Scholar
  25. 25.
    D. Vasileska, D. K. Schroder and D. K. Ferry, “Scaled silicon MOSFETs: degradation of the total gate capacitance”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 584–587, 1997.CrossRefGoogle Scholar
  26. 26.
    K. S. Krisch, J. D. Bude and L. Manchanda, “Gate capacitance attenuation in MOS devices with thin gate dielectrics”, IEEE Electron Dev. Lett, vol. 17, no. 11, pp. 521–524, Nov. 1996.CrossRefGoogle Scholar
  27. 27.
    L. de Broglie, C. R. Acad. Sci. Paris, vol. 183, 447, 1926.Google Scholar
  28. 28.
    L. de Broglie, C. R. Acad. Sci. Paris, vol. 184, 273, 1927.Google Scholar
  29. 29.
    E. Madelung, “Quantum theory in hydrodynamical form”, Z. Phys., 40, 322, 1926.Google Scholar
  30. 30.
    D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I”, Phys. Rev., 85, no. 2, 166–179, Jan. 1952.Google Scholar
  31. 31.
    D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables. II”, Phys. Rev., Vol. 85, 180 (1952).Google Scholar
  32. 32.
    C. Dewdney and B. J. Hiley, “A Quantum Potential Description of One-Dimensional Time-Dependant Scattering From Square Barriers and Square Wells”, Found. Phys., vol. 12, no. 1, pp. 27–48, Jan. 1982.CrossRefGoogle Scholar
  33. 33.
    G. J. Iafrate, H. L. Grubin, and D.K Ferry, “Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport”, Journal de Physique., vol. 42 (Colloq. 7), 10, 307–312, Oct. 1981.Google Scholar
  34. 34.
    E. Wigner, “On the Quantum Correction For Thermodynamic Equilibrium”, Phys. Rev., vol. 40, no. 5, pp. 749–759, Jun. 1932.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    D. K. Ferry and J.-R. Zhou, “Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling”, Phys. Rev. B., vol. 48, no. 11, pp. 7944–7950, Sep. 1993.CrossRefGoogle Scholar
  36. 36.
    P. Feynman and H. Kleinert, “Effective classical partition functions”, Phys. Rev. A, 34, no. 6, pp. 5080–5084, Dec. 1986.Google Scholar
  37. 37.
    C. L. Gardner and C. Ringhofer, “Smooth quantum potential for the hydrodynamic model”, Phys. Rev. E, vol. 53, no. 1, pp. 157–166, Jan. 1996.CrossRefGoogle Scholar
  38. 38.
    C. Ringhofer and C. L. Gardner, “Smooth quantum hydrodynamic model simulation of the resonant tunneling diode”, VLSI Design, vol. 8, 1–4, 143–146, 1998.Google Scholar
  39. 39.
    D. Vasileska and S. S. Ahmed, “Narrow-Width SOI Devices: The Role of Quantum–Mechanical Size Quantization Effect and Unintentional Doping on the Device Operation”, IEEE Trans. Electron Devices, vol. 52, no. 2, pp. 227–236, Feb. 2005.CrossRefGoogle Scholar
  40. 40.
    D. K. Ferry, “The onset of quantization in ultra-submicron semiconductor devices”, Superlattices and Microstructures, vol. 27, no. 2–3, pp. 61–66, Jan. 2000.CrossRefGoogle Scholar
  41. 41.
    C. Ringhofer, S. Ahmed and D. Vasileska, “An effective potential approach to modeling 25 nm MOSFET devices”, Journal of Computational Electronics, vol. 2, pp. 113–117, 2003.CrossRefGoogle Scholar
  42. 42.
    C. Ringhofer, C. Gardner and D. Vasileska, “Effective potentials and quantum fluid models: a thermodynamic approach”, Inter. J. on High Speed Electronics and Systems, vol. 13, no. 3, pp. 771–804, Jan. 2003.CrossRefGoogle Scholar
  43. 43.
    Shaikh Shahid Ahmed, “Quantum and Coulomb Effects in Nanoscale Devices”, Ph. D. Dissertation, Arizona State University, Dec. 2004.Google Scholar
  44. 44.
    R. Akis, S. Milicic, D. K. Ferry, D. Vasileska, “An Effective Potential Method for Including Quantum Effects Into the Simulation of Ultra-Short and Ultra-Narrow Channel MOSFETs”, Proceedings of the 4th International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, SC, pp. 550–3, Mar. 2001.Google Scholar
  45. 45.
    C. Ringhofer, S. S. Ahmed and D. Vasileska, “Effective potential approach to modeling of 25 nm MOSFET devices”, Superlattices and Microstructures, vol. 34, no. 3–6, pp. 311–317, 2003.CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Y. Omura, S. Horiguchi, M. Tabe, and K. Kishi, “Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs”, IEEE Elec. Device Lett., vol. 14, no. 12, pp. 569–571, Dec. 1993.CrossRefGoogle Scholar
  48. 48.
    S. M. Ramey and D. K. Ferry, “Implementation of surface roughness scattering in Monte Carlo modeling of thin SOI MOSFETs using the effective potential”, IEEE Transactions on Nanotechnology, vol. 2, no. 2, pp. 110–114, Jun. 2003.CrossRefGoogle Scholar
  49. 49.
    S. Hasan, J. Wang, and M. Lundstrom, “Device design and manufacturing issues for 10 nm-scale MOSFETs: a computational study”, Solid–State Elect, vol. 48, no. 6, pp. 867–875, 2004.Google Scholar
  50. 50.
    S. Datta, “Electronic Transport in Mesoscopic Systems”, Cambridge Studies in Semiconductor Physics Series, ISBN 0-521-59943-1, paperback, 1998.Google Scholar
  51. 51.
    D. Vasileska, S. M. Goodnick and Gerhard Klimeck, Computational Electronics: Semiclassical and Quantum Transport Modeling, CRC Press, June 2010.Google Scholar
  52. 52.
    P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev., vol. 136, no. 3b, B864-B871, Nov. 1964.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Kohn, and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., vol. 140, no. 4a, pp. A1133–A1138, Nov. 1965.Google Scholar
  54. 54.
    L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials”, J. Phys. C, vol. 4, no. 14, pp. 2064–2082, Mar. 1971.CrossRefGoogle Scholar
  55. 55.
    C. Hu, S. Banerjee, k. Sadra, B.G. Streetman and R. Sivan, “Quantization Effects in Inversion Layers of PMOSFET’s on Si (100) Substrates”, IEEE Electron Dev. Lett., vol. 17, no. 6, pp. 276–278, Jun. 1996Google Scholar
  56. 56.
    S. Takagi, M. Takayanagi, and A. Toriumi, “Characterization of Inversion-Layer Capacitance of Holes in Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1446–1450, Jul. 1999.CrossRefGoogle Scholar
  57. 57.
    D. Vasileska, D. K. Schroder and D.K. Ferry, “Scaled silicon MOSFET’s: Part II-Degradation of the total gate capacitance”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 584–587, Apr. 1997.CrossRefGoogle Scholar
  58. 58.
    D. Vasileska, and D.K. Ferry, “The influence of space quantization effects on the threshold voltage, inversion layer and total gate capacitance in scaled Si-MOSFETs”, Technical Proceedings of the First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, California, vol. 10, no. 2, pp. 408–413, Apr. 1998.Google Scholar
  59. 59.
    J. Fossum, Z. Ren, K. Kim and M. Lundstrom “Extraordinarily High Drive Currents in Asymmetrical Double-Gate MOSFETs”, Superlattices and Microstructures, vol. 28, no. 5–6, pp. 525–530, Jun. 2000.CrossRefGoogle Scholar
  60. 60.
    J. P. Colinge, X. Baie, V. Bayot, and E. Grivei, “A silicon-on-insulator quantum wire,” Solid-State Electron., vol. 39, no. 1, pp. 49–51, Jan. 1996.CrossRefGoogle Scholar
  61. 61.
    X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Sub 50-nm FinFET: PMOS,” in IEDM Tech. Dig., pp. 67–70, Dec. 1999.Google Scholar
  62. 62.
    Z. Jiao and C. A. T. Salama, “A fully depleted _-channel SOI nMOSFET,” Electrochem. Soc. Proc., vol. 3, pp. 403–408, 2001.Google Scholar
  63. 63.
    J. P. Coolinge, M. H. Gao, A. Romano, H. Maes, and C. Claeys, “Silicon- on-insulator “gate-all-around” MOS device,” SOI Conf. Dig., pp. 137–138, 1990.Google Scholar
  64. 64.
    D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, “A fully depleted lean-channel transistor (DELTA)—A novel vertical ultra-thin SOI MOSFET,” in IEDM Tech. Dig., pp. 833–836, Dec. 1989.Google Scholar
  65. 65.
    C. P. Auth and J. D. Plummer, “A simple model for threshold voltage of surrounding-gate MOSFETs,”, IEEE Trans. Electron Devices, vol. 45, no.11, pp. 2381–2383, Nov. 1998.CrossRefGoogle Scholar
  66. 66.
    T. Sekigawa and Y. Hayashi, “Calculated threshold voltage characteristics of an XMOS transistor having an additional bottom gate,” Solid- State Electron., vol. 27, no. 8–9, pp. 827–828, Jan. 1984.CrossRefGoogle Scholar
  67. 67.
    A. Rahman, M. S. Lundstrom, and A. W. Ghosh, “Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers”, Journal of applied physics, vol. 97, no. 5, pp. 053702–053714, Feb. 2005.CrossRefGoogle Scholar
  68. 68.
    A. Rahman, “Exploring new channel materials for nanoscale CMOS devices: A simulation approach”, Ph.D. Dissertation, Purdue University.Google Scholar
  69. 69.
    I. H. Tan, G.L. Snider, L. D. Chang and E. L. Hu, “A self-consistent Solution of Schrödinger–Poisson Equations using a Non-uniform Mesh,” J. Appl. Phys., vol. 68, pp. 4071–4076, Oct. 1990.CrossRefGoogle Scholar
  70. 70.
    T. Yang, Y. Liu, P.D. Ye, Y. Xuan, H. Pal, M. S. Lundstrom, “Inversion Capacitance-Voltage Studies on GaAs Metal-Oxide-Semiconductor Structure using Transparent Conducting Oxide as Metal Gate”, Applied Physics Letters, vol. 92, pp. 252105–252108, Jun. 2008.CrossRefGoogle Scholar
  71. 71.
    F. Gilibert, D. Rideau, F. Payet, F. Boeuf, E. Batail, M. Minondo, R. Bouchakour, T. Skotnicki, H. Jaouen, “Strained Si/SiGe MOSFET capacitance modeling based on band structure analysis”, Proceedings of the 35th European Solid State Device Research Conference (ESSDERC’2005), Grenoble, no. 12–16, pp. 281–284, Sep. 2005.Google Scholar
  72. 72.
    L. Rayleigh, “On the propagation of waves through a stratified medium, with special reference to the question of reflection”, Proc. Roy. Soc. A, vol. 86, no. 586, pp. 207, 1912.Google Scholar
  73. 73.
    ET. Jaynes. Probability Theory: The Logic of Science, Cambridge University Press, (2003).Google Scholar
  74. 74.
    Usuki T., Saito M., Takatsu M., Kiehl R.A., Yokoyama N.:Numerical analysis of electron wave detection by a wedge shaped point contact. Phys. Rev. B 520, 7615–7625 (1994).Google Scholar
  75. 75.
    Datta S.: Nanoscale device modeling: the Green’s function method. Superlattices and Microstuctures 28, 253–278 (2000).Google Scholar
  76. 76.
    D. K. Ferry, Quantum Mechanics for Electrical Engineers, IOP Press (2000).Google Scholar
  77. 77.
    C. B. Duke, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich ∼ Academic, New York, 1969!Google Scholar
  78. 78.
    W. W. Lui and M. Fukuma “Exact solution of the Schrödinger equation across an arbitrary one-dimensional piecewise-linear potential barrier” J. Appl. Phys. 60, 1555–1559 (1986).Google Scholar
  79. 79.
    T. Mizuno, J. Okamura and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s”, IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 2216–2221, Nov. 1994.CrossRefGoogle Scholar
  80. 80.
    T. Mizuno, “Influence of Statistical Spatial-Nonuniformity of Dopant Atoms on Threshold Voltage in a System of Many MOSFETs”, Jpn. J. Appl. Phys, vol. 35, pp. 842–848, Jan. 1996.CrossRefGoogle Scholar
  81. 81.
    J. T. Horstmann, U. Hilleringmann and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 299–306, Jan. 1998.CrossRefGoogle Scholar
  82. 82.
    P. A. Stolk, F. P. Widdershoven and D. B. M. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”, IEEE Trans. Electron Devices, vol. 45, pp. 1960–1971, Sep. 1998.CrossRefGoogle Scholar
  83. 83.
    K. Nishinohara, N. Shigyo and T. Wada, “Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage”, IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 634–639, Mar. 1992.CrossRefGoogle Scholar
  84. 84.
    J.-R. Zhou and D. K. Ferry, “3D simulation of deep-submicron devices. How impurity atoms affect conductance”, IEEE Comput. Science and Eng., vol. 2, no. 2, pp. 30–36, May. 1995.Google Scholar
  85. 85.
    D. Vasileska, W. J. Gross, V. Kafedziski and D. K. Ferry, “Continuity Equations for Scaled Si MOSFETs”, VLSI Design, vol. 8, no. 1–4, pp. 301, 1998.Google Scholar
  86. 86.
    D. Vasileska, W. J. Gross and D. K. Ferry, “Modeling of deep-submicrometer MOSFETs: random impurity effects, threshold voltage shifts and gate capacitance attenuation”, Extended Abstracts IWCE-6, Osaka, IEEE Cat. No. 98EX116, pp. 259–262, 1998.Google Scholar
  87. 87.
    X. Tang, V. K. De and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement”, IEEE Trans. on VLSI Systems, vol. 5, no. 4, pp. 369–376, Dec. 1997.CrossRefGoogle Scholar
  88. 88.
    P. Lugli and D. K. Ferry, “Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors”, IEEE Trans. Electron Dev., vol. 32, no. 11, pp. 2431–2437, Nov. 1985.CrossRefGoogle Scholar
  89. 89.
    A. M. Kriman, M. J. Kann, D. K. Ferry and R. Joshi, “Role of the exchange interaction in the short-time relaxation of a high-density electron plasma”, Phys. Rev. Lett., vol. 65, no. 13, pp. 1619–1622, Sep. 1990.CrossRefGoogle Scholar
  90. 90.
    W. J. Gross, D. Vasileska, and D. K. Ferry, “3 D simulations of ultra-small MOSFETs with real-space treatment of the electron-electron and electron-ion interactions”, VLSI Design, vol. 10, no. 4, pp. 437-, 2000.Google Scholar
  91. 91.
    D. Vasileska, W. J. Gross, and D. K. Ferry, “Monte Carlo particle-based simulations of deep-submicron n-MOSFETs with real-space treatment of electron-electron and electron-impurity interactions”, Superlattices and Microstructures, vol. 27, no. 2–3, pp. 147–157, Feb. 2000.CrossRefGoogle Scholar
  92. 92.
    A. Asenov, “Random dopant induced threshold voltage lowering and fuctuations in sub 0. 1μm MOSFETs: A 3-D ‘atomistic’ simulation study”, IEEE Trans. Electron Dev., vol. 45, no. 12, pp. 2505–2513, Dec. 1998.Google Scholar
  93. 93.
    A. Asenov and S. Saini, “Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm MOSFET’s with epitaxial and δ-doped channels”, IEEE Trans. Electron Dev., vol. 46, no. 8, pp. 1718–1724, Aug. 1999.Google Scholar
  94. 94.
    L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations ∗ 1,  ∗ 2”, J. Comput. Phys., vol. 135, no. 2, pp. 280–292, Aug 1997.MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    R. Beatson and L. Greengard, “A short course on fast multipole methods,”, Wavelets, Multilevel Methods and Elliptic PDEs (Leicester, 1996), ser. Numer. Math. Sci. Comput. New York: Oxford Univ. Press, pp. 1–37, 1997.Google Scholar
  96. 96.
    H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm in three dimensions”, J. Comput. Phys., vol. 155, no. 2, pp. 468–498, Aug. 1999.MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    FMMPART3D user’s guide, version 1.0 ed., MadMax Optics, Hamden, CT, USA.Google Scholar
  98. 98.
    R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles”, New York, McGraw-Hill, 1981.Google Scholar
  99. 99.
    C. J. Wordelman and U. Ravaioli, “Integration of a particle-particle-particle-mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices”, IEEE Tran. Electron Devices, vol. 47, no. 2, pp. 410–416, Feb. 2000.CrossRefGoogle Scholar
  100. 100.
    W. J. Gross, D. Vasileska, and D. K. Ferry, “Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics”, IEEE Electron Devices, vol. 47, no. 10, pp. 1831–1837, Oct. 2000.CrossRefGoogle Scholar
  101. 101.
    Allen, D. Holberg, “CMOS Analog Circuit Design”, Saunders College Publishing, New York, 1987.Google Scholar
  102. 102.
    Bohr, Y., A. El-Mansy, “Technology for advanced high-performance microprocessors”,IEEE Trans. Electron Dev., vol. 45, no. 3, pp. 620–625, Mar. 1998.Google Scholar
  103. 103.
    SIA Technology Roadmap of Semiconductors: http://www.itrs.net/Google Scholar
  104. 104.
    E. H. Nicollian and A. Goetzberger, “The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique”, Bell Syst. Techn. J., vol. 46, no. 6, pp. 1055–1133, 1967.Google Scholar
  105. 105.
    J. T. Horstmann, U. Hilleringmann and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFET’s”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 299–306, Jan. 1998.CrossRefGoogle Scholar
  106. 106.
    P. A. Stolk, F. P. Widdershoven and D. B. M. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 1960–1971, Sep. 1998.CrossRefGoogle Scholar
  107. 107.
    W. J. Gross, D. Vasileska and D. K. Ferry, “Three-dimensional simulations of ultrasmall metal–oxide–semiconductor field-effect transistors: The role of the discrete impurities on the device terminal characteristics”, Journal of Applied Physics, vol. 91, no. 6, pp. 3737–3740, Mar. 2002.CrossRefGoogle Scholar
  108. 108.
    H. Majima, H. Ishikuro, and T. Hiramoto, “Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET’s”, IEEE Electron Dev. Lett., vol. 21, no. 8, pp. 396–398, Aug. 2000.CrossRefGoogle Scholar
  109. 109.
    H.R. Khan, D. Vasileska, S.S. Ahmed, C. Ringhofer and C. Heitzinger, “Modeling of FinFETs: 3D MC Simulation Using FMM and Unintentional Doping Effects on Device Operation”, Journal of Computational Electronics, Vol. 3, Nos. 3–4, pp. 337–340 (2005).Google Scholar
  110. 110.
    L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu,“Gate length scaling and threshold voltage control of double-gate MOSFETs,” IEDM Tech. Dig., vol. 6, pp. 719–722, Dec. 2000.Google Scholar
  111. 111.
    Clemens Heitzinger, Christian Ringhofer, Shaikh Ahmed and Dragica Vasileska, “3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions”, DOI 10.1007/s10825-006-0058-x, Journal of Computational Electronics, Volume 6, Numbers 1—3/September, pp. 15—18, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dragica Vasileska
    • 1
  • Hasanur Rahman Khan
  • Shaikh Shahid Ahmed
  • Gokula Kannan
  • Christian Ringhofer
  1. 1.School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeUSA

Personalised recommendations