Advertisement

Classical Device Modeling

  • Thomas Windbacher
  • Viktor Sverdlov
  • Siegfried Selberherr
Chapter

Abstract

In this chapter an overview of classical device modeling will be given. The first section is dedicated to the derivation of the Drift–Diffusion Transport model guided by physical reasoning. How to incorporate Fourier’s law to add a dependence on temperature gradients into the description, is presented. Quantum mechanical effects relevant for small devices are approximately covered by quantum correction models. After a discussion of the Boltzmann Transport equation and the systematic derivation of the Drift–Diffusion Transport model, the Hydrodynamic Transport model, the Energy Transport model, and the Six-Moments Transport model via a moments based method out of the Boltzmann Transport Equation, which is the essential topic of classical transport modeling, are highlighted. The parameters required for the different transport models are addressed by an own section in conjunction with a comparison between the Six-Moments Transport model and the more rigorous Spherical Harmonics Expansion model, benchmarking the accuracy of the moments based approach. Some applications of classical transport models are presented, namely, analyses of solar cells, biologically sensitive field-effect transistors, and thermovoltaic elements. Each example is addressed with an introduction to the application and a description of its peculiarities.

Keywords

Classical device modeling Drift–Diffusion Six moments Hydrodynamic transport Energy transport Solar cells BioFET Biologically sensitive field-effect transistor Boltzmann transport Thermoelectric Figure of merit Electrothermal transport Spherical harmonics expansion 

Notes

Acknowledgements

Special thanks go to Prof. Tibor Grasser, Prof. Hans Kosina, and Neophytos Neophytou for their support in questions related to higher order transport models and modeling transport in thermovoltaic elements. Also the various discussions about higher order transport models and nice pictures regarding higher order transport models and SHE from Martin Vasicek, and the examples related to thermovoltaic elements from Martin Wagner are highly appreciated. This work was partly funded by the Austrian Science Fund project P18316-N13 and partly by the “Klima- und Energiefonds” Austria, project No. 825467.

References

  1. 1.
    Aberle, A.: Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis. Centre for Photovoltaic Engineering, University of New South Wales, Sydney (1999)Google Scholar
  2. 2.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications Inc. (1965)Google Scholar
  3. 3.
    Adler, M.: Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors. IEEE Trans.Electron Devices 25(1), 16–22 (1978)CrossRefGoogle Scholar
  4. 4.
    Agostinelli, V.J., Bordelon, T., Wang, X., Yeap, C., Maziar, C., Tasch, A.: An Energy-Dependent Two-Dimensional Substrate Current Model for the Simulation of Submicrometer MOSFET’s. IEEE Electron Device Lett. 13(11), 554–556 (1992). DOI 10.1109/55.192837CrossRefGoogle Scholar
  5. 5.
    Ainsworth, L.: Single Crystal Bismuth Telluride. Proc.Phys.Soc.B 69(6), 606–612 (1956)Google Scholar
  6. 6.
    Allen, C., Jeon, J.H., Woodall, J.: Simulation Assisted Design of a Gallium Phosphide n-p Photovoltaic Junction. Solar Energy Materials and Solar Cells 94(5), 865–868 (2010). DOI 10.1016/j.solmat.2010.01.009CrossRefGoogle Scholar
  7. 7.
    Altenkirch, E.: Über den Nutzeffekt der Thermosäule. Physikalische Zeitschrift 10, 560–580 (1909)Google Scholar
  8. 8.
    Altenkirch, E.: Elektrothermische Kälteerzeugung und reversible elektrische Heizung. Physikalische Zeitschrift 12, 920–924 (1911)Google Scholar
  9. 9.
    Amith, A.: Seebeck Coefficient in n-Type Germanium-Silicon Alloys: ”Competition” Region. Physical Review 139(5A), A1624–A1627 (1965). DOI 10.1103/PhysRev.139.A1624Google Scholar
  10. 10.
    Andrieu, F., Ernst, T., Faynot, O., Rozeau, O., Bogumilowicz, Y., Hartmann, J., Brévard, L., Toffoli, A., Lafond, D., Ghyselen, B., Fournel, F., Ghibaudo, G., Deleonibus, S.: Performance and Physics of sub-50 nm Strained Si on Si 1 − x Ge x-On-Insulator (SGOI) nMOSFETs. Solid-State Electron. 50(4), 566–572 (2006). DOI 10.1016/j.sse.2006.03.029CrossRefGoogle Scholar
  11. 11.
    Anile, A., Pennisi, S.: Extended Thermodynamics of the Blotekjaer Hydrodynamical Model for Semiconductors. Continuum Mechanics and Thermodynamics 4(3), 187–197 (1992). DOI 10.1007/BF01130290MathSciNetCrossRefGoogle Scholar
  12. 12.
    Anile, A.M., Muscato, O.: Improved Hydrodynamical Model for Carrier Transport in Semiconductors. Physical Review B 51(23), 16,728–16,740 (1995). DOI 10.1103/PhysRevB.51.16728Google Scholar
  13. 13.
    Apel, P., Korchev, Y., Siwy, Z., Spohr, R., Yoshida, M.: Diode-Like Single-Ion Track Membrane Prepared by Electro-Stopping. Nucl. Instrum. and Meth. in Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 184(3), 337–346 (2001). DOI 10.1016/S0168-583X(01)00722-4CrossRefGoogle Scholar
  14. 14.
    Ashcroft, N., Mermin, N.: Solid State Physics. Cengage Learning Services (1976)Google Scholar
  15. 15.
    Baccarani, G., Rudan, M., Guerrieri, R., Ciampolini, P.: Physical Models for Numerical Device Simulation, vol. 1. North-Holland Publishing Co., Amsterdam, The Netherlands (1986)Google Scholar
  16. 16.
    Baccarani, G., Wordeman, M.: An Investigation of Steady-State Velocity Overshoot in Silicon. Solid-State Electron. 28(4), 407–416 (1985). DOI 10.1016/0038-1101(85)90100-5CrossRefGoogle Scholar
  17. 17.
    Bahandari, C.: CRC Handbook of Thermoelectrics, Chapter: Minimizing the Thermal Conductivity. CRC Press LLC (1994)Google Scholar
  18. 18.
    Baker, N.A., Sept, D., J., S., Holst, M.J., McCammon, J.A.: Electrostatics of Nanosystems: Application to Microtubules and the Ribosome. Proc. of the National Academy of Sciences of the United States of America 98(18), 10,037–10,041 (2001). DOI 10.1073/pnas.181342398Google Scholar
  19. 19.
    Bandyopadhyay, S., Klausmeier-Brown, M., Maziar, C., Datta, S., Lundstrom, M.: A Rigorous Technique to Couple Monte Carlo and Drift-Diffusion Models for Computationally Efficient Device Simulation. IEEE Trans.Electron Devices 34(2), 392–399 (1987)CrossRefGoogle Scholar
  20. 20.
    Barcilon, V., Chen, D.P., Eisenberg, R.S., Jerome, J.W.: Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study. SIAM J. Appl. Math. 57(3), 631–648 (1997). DOI 10.1137/S0036139995312149MathSciNetMATHGoogle Scholar
  21. 21.
    Bentien, A., Christensen, M., Bryan, J., Sanchez, A., Paschen, S., Steglich, F., Stucky, G., Iversen, B.: Thermal Conductivity of Thermoelectric Clathrates. Physical Review B 69(4) (2004). DOI 10.1103/PhysRevB.69.045107Google Scholar
  22. 22.
    Bentien, A., Johnsen, S., Madsen, G., Iversen, B., Steglich, F.: Colossal Seebeck Coefficient in Strongly Correlated Semiconductor FeSb 2. EPL (Europhysics Letters) 80(1), 17,008 (2007). stacks.iop.org/0295-5075/80/17008
  23. 23.
    Bergveld, P.: Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 17(1), 70–71 (1970). DOI 10.1109/TBME.1970.4502688CrossRefGoogle Scholar
  24. 24.
    Bergveld, P.: The Development and Application of FET-Based Biosensors. Biosensors 2(1), 15–34 (1986)CrossRefGoogle Scholar
  25. 25.
    Bergveld, P.: Thirty Years of ISFETOLOGY: What Happened in the Past 30 Years and What May Happen in the Next 30 Years. Sensors and Actuators B: Chemical 88(1), 1–20 (2003). DOI 10.1016/S0925-4005(02)00301-5CrossRefGoogle Scholar
  26. 26.
    Beynon, R., Easterby, J.: Buffer Solutions the Basiscs. Oxford University Press, Oxford New York Tokyo (1996)Google Scholar
  27. 27.
    Bhandari, C., Agrawal, V.: Thermal and Electrical Transport in Bismuth Telluride. Indian Journal of Pure and Applied Physics 28, 448–451 (1990)Google Scholar
  28. 28.
    Bløtekjær, K.: Transport Equations for Electrons in Two-Valley Semiconductors. IEEE Intl. Electron Devices Meeting 17, 38–47 (1969)Google Scholar
  29. 29.
    Bousse, L.: Single Electrode Potentials Related to Flat-Band Voltage Measurements on EOS and MOS Structures. J.Chem.Phys. 76(10), 5128–5133 (1982). DOI 10.1063/1.442812CrossRefGoogle Scholar
  30. 30.
    Bousse, L., Mostarshed, S., Van Der Shoot, B., De Rooij, N.F., Gimmel, P., Gopel, W.: Zeta Potential Measurements of Ta2 O 5 and SiO2 Thin Films. Journal of Colloid and Interface Science 147(1), 22–32 (1991)CrossRefGoogle Scholar
  31. 31.
    Brugger, S., Schenk, A., Fichtner, W.: Moments of the Inverse Scattering Operator of the Boltzmann Equation: Theory and Applications. SIAM Journal on Applied Mathematics 66(4), 1209–1226 (2006). DOI 10.1.1.72.3270MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Callen, H.: Thermodynamics. John Wiley & Sons Inc. (1966)Google Scholar
  33. 33.
    Campa, A., Krc, J., Topic, M.: Analysis and Optimisation of Microcrystalline Silicon Solar Cells with Periodic Sinusoidal Textured Interfaces by Two-Dimensional Optical Simulations. J.Appl.Phys. 105(8), 083,107–083,107–5 (2009). DOI 10.1063/1.3115408Google Scholar
  34. 34.
    Caughey, D., Thomas, R.: Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc.IEEE 55(12), 2192–2193 (1967)Google Scholar
  35. 35.
    Caywood, L.P., Miller, G.R.: Anistropy of the Constant-Energy Surfaces in n-type Bi 2 Te 3 and Bi 2 Se 3 from Galvanomagnetic Coefficients. Physical Review B 2(8), 3209–3220 (1970). DOI 10.1103/PhysRevB.2.3209CrossRefGoogle Scholar
  36. 36.
    Cervera, J., Schiedt, B., Ramírez, P.: A Poisson/Nernst-Planck Model for Ionic Transport Through Synthetic Conical Nanopores. Europhys. Lett. 71(1), 35–41 (2005). DOI 10.1209/epl/i2005-10054-xCrossRefGoogle Scholar
  37. 37.
    Chen, G., Narayanaswamy, A., Dames, C.: Engineering Nanoscale Phonon and Photon Transport for Direct Energy Conversion. Superlattices and Microstructures 35(3-6), 161–172 (2004). DOI 10.1016/j.spmi.2003.08.001. Eurotherm 75 ‘Microscale Heat Transfer 2’CrossRefGoogle Scholar
  38. 38.
    Chen, G., Zeng, T., Borca-Tasciuc, T., Song, D.: Phonon Engineering in Nanostructures for Solid-State Energy Conversion. Mat.Sci.Eng.A 292(2), 155–161 (2000). DOI 10.1016/S0921-5093(00)00999-0Google Scholar
  39. 39.
    Cheng, Z.,, Currie, M., Leitz, C., Taraschi, G., Fitzgerald, E., Hoyt, J., Antoniadas, D.: Electron Mobility Enhancement in Strained-Si n-MOSFETs Fabricated on SiGe-On-Insulator (SGOI) Substrates. IEEE Electron Device Lett. 22, 321–323 (2001). DOI 10.1109/55.930678CrossRefGoogle Scholar
  40. 40.
    Chynoweth, A.: Ionization Rates for Electrons and Holes in Silicon. Physical Review 109(5), 1537–1540 (1958). DOI 10.1103/PhysRev.109.1537CrossRefGoogle Scholar
  41. 41.
    Coalson, R., Kurnikova, M.: Poisson-Nernst-Planck Theory Approach to the Calculation of Current Through Biological Ion Channels. IEEE Trans. NanoBioscience 4(1), 81–93 (2005). DOI 10.1109/TNB.2004.842495CrossRefGoogle Scholar
  42. 42.
    Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 293(5533), 1289–1292 (2001)CrossRefGoogle Scholar
  43. 43.
    Debye, P., Hückel, E.: Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift 24(9), 185–206 (1923)Google Scholar
  44. 44.
    Deen, M.J., Shinwari, M.W., Ranuárez, J.C., Landheer, D.: Noise Considerations in Field-Effect Biosensors. J.Appl.Phys. 100(7), 074,703–1 –074,703–8 (2006)Google Scholar
  45. 45.
    Delahay, P.: Double Layer and Electrode Kinetics. New York: Interscience Publishers (1965)Google Scholar
  46. 46.
    Ding, Z., Huang, S., Marcus, D., Kaner, R.: Modification of Bismuth Telluride for Improving Thermoelectric Properties. In: Intl. Conf. on Thermoelectrics, pp. 721–724 (1999). DOI 10.1109/ICT.1999.843487Google Scholar
  47. 47.
    van Dort, M., Woerlee, P., Walker, A.: A Simple Model for Quantisation Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions. Solid-State Electron. 37(3), 411–414 (1994). DOI 10.1016/0038-1101(94)90005-1Google Scholar
  48. 48.
    Drabble, J.: Progress in Semiconductors, vol. 7. John Wiley & Sons Inc., New York (1963)Google Scholar
  49. 49.
    Fano, V.: CRC Handbook of Thermoelectrics, Chapter: Lead Telluride and Its Alloys. CRC Press LLC (1994)Google Scholar
  50. 50.
    Fischetti, M.: Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures. I. Homogeneous Transport. IEEE Trans.Electron Devices 38(3), 634–649 (1991). DOI 10.1109/16.75176MathSciNetCrossRefGoogle Scholar
  51. 51.
    Fleurial, J., Gailliard, L., Triboulet, R., Scherrer, H., Scherrer, S.: Thermal Properties of High Quality Single Crystals of Bismuth Telluride Part I: Experimental Characterization. J.Phys.Chem.Solids 49(10), 1237–1247 (1988). DOI 10.1016/0022-3697(88)90182-5CrossRefGoogle Scholar
  52. 52.
    World Record: 41. 1% Efficiency Reached for Multi-Junction Solar Cells at Fraunhofer ISE. Press Release (2009). www.ise.fraunhofer.de
  53. 53.
    Fritz, J., Cooper, E., Gaudet, S., Soger, P., Manalis, S.: Electronic Detection of DNA by its Intrinsic Molecular Charge. PNAS 99(22), 1412–1416 (2002). DOI 10.1073/pnas.232276699Google Scholar
  54. 54.
    Fthenakis, V., Kim, H., Alsema, E.: Emissions from Photovoltaic Life Cycles. Environmental Science & Technology 42(6), 2168–2174 (2008). DOI 10.1021/es071763qCrossRefGoogle Scholar
  55. 55.
    Fulkerson, W., Moore, J.P., Williams, R.K., Graves, R.S., McElroy, D.L.: Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 ∘  K. Physical Review 167(3), 765–782 (1968). DOI 10.1103/PhysRev.167.765CrossRefGoogle Scholar
  56. 56.
    Gao, Z., Agarwal, A., Trigg, A., Singh, N., Fang, C., Tung, C.H., Fan, Y., Buddharaju K.D., and Kong, J.: Silicon Nanowire Arrays for Label-Free Detection of DNA. Analytical Chemistry 79(9), 3291–3297 (2007). DOI 10.1021/ac061808qCrossRefGoogle Scholar
  57. 57.
    Geballe, T.H., Hull, G.W.: Seebeck Effect in Germanium. Physical Review 94(5), 1134–1140 (1954). DOI 10.1103/PhysRev.94.1134CrossRefGoogle Scholar
  58. 58.
    Geballe, T.H., Hull, G.W.: Seebeck Effect in Silicon. Physical Review 98(4), 940–947 (1955). DOI 10.1103/PhysRev.98.940CrossRefGoogle Scholar
  59. 59.
    Gharghi, M., Bai, H., Stevens, G., Sivoththaman, S.: Three-Dimensional Modeling and Simulation of p − n Junction Spherical Silicon Solar Cells. IEEE Trans.Electron Devices 53(6), 1355–1363 (2006). DOI 10.1109/TED.2006.873843CrossRefGoogle Scholar
  60. 60.
    Giesbers, M., Kleijn, J., Stuart, M.: The Electrical Double Layer on Gold Probed by Electrokinetic andSurfaceForce Measurements. Journal of Colloid and Interface Science 248(1), 88–95 (2002). DOI 10.1006/jcis.2001.8144CrossRefGoogle Scholar
  61. 61.
    Gileadi, E., Kirowa Eisner, E., Penciner, J.: Interfacial Electrochemistry: An Experimental Approach. Addison-Wesley Publishing Company (1975)Google Scholar
  62. 62.
    Girard, A., Bendria, F., Sagazan, O.D., Harnois, M., Bihan, F.L., Salaün, A., Mohammed-Brahim, T., Brissot, P., Loréal, O.: Transferrin Electronic Detector for Iron Disease Diagnostics. In: IEEE Conf. on Sensors, pp. 474–477 (2006). DOI 10.1109/ICSENS.2007.355509Google Scholar
  63. 63.
    Goetzberger, A., Voß, B., Knobloch, J.: Sonnenenergie: Photovoltaik, vol. 2. Teubner Studienbücher (1997)Google Scholar
  64. 64.
    Goldsmid, H.: The Thermal Conductivity of Bismuth Telluride. Proc.Phys.Soc.B 69(2), 203–209 (1956). stacks.iop.org/0370-1301/69/203
  65. 65.
    Goldsmid, H.: Heat Conduction in Bismuth Telluride. Proc.Phys.Soc. 72(1), 17–26 (1958). stacks.iop.org/0370-1328/72/17
  66. 66.
    Goldsmid, H.: Recent Studies of Bismuth Telluride and Its Alloys. J.Appl.Phys. 32(10), 2198–2202 (1961). DOI 10.1063/1.1777042CrossRefGoogle Scholar
  67. 67.
    Grasser, T.: Non-Parabolic Macroscopic Transport Models for Semiconductor Device Simulation. Physica A: Statistical Mechanics and its Applications 349(1-2), 221–258 (2005). DOI 10.1016/j.physa.2004.10.035CrossRefGoogle Scholar
  68. 68.
    Grasser, T., Jungemann, C., Kosina, H., Meinerzhagen, B., Selberherr, S.: Advanced Transport Models for Sub-Micrometer Devices. In: Intl. Conf. on Simulation of Semiconductor Processes and Devices, pp. 1–8. Springer-Verlag (2004)Google Scholar
  69. 69.
    Grasser, T., Kosik, R., Jungemann, C., Kosina, H., Selberherr, S.: Nonparabolic Macroscopic Transport Models for Device Simulation Based on Bulk Monte Carlo Data. J.Appl.Phys. 97(9), 093710 (2005). DOI 10.1063/1.1883311CrossRefGoogle Scholar
  70. 70.
    Grasser, T., Kosik, R., Jungemann, C., Meinerzhagen, B., Kosina, H., Selberherr, S.: A Non-Parabolic Six Moments Model for the Simulation of Sub-100 nm Semiconductor Devices. J.Comp.Electronics 3(3), 183–187 (2004). DOI 10.1007/s10825-004-7041-1CrossRefGoogle Scholar
  71. 71.
    Grasser, T., Kosina, H., Gritsch, M., Selberherr, S.: Using Six Moments of Boltzmann’s Transport Equation for Device Simulation. J.Appl.Phys. 90(5), 2389–2396 (2001). DOI 10.1063/1.1389757CrossRefGoogle Scholar
  72. 72.
    Grasser, T., Tang, T.W., Kosina, H., Selberherr, S.: A Review of Hydrodynamic and Energy-Transport Models for Semiconductor Device Simulation. Proc.IEEE 91(2), 251–274 (2003). DOI 10.1109/JPROC.2002.808150Google Scholar
  73. 73.
    Green, M.: Solar Cells : Operating Principles, Technology, and System Applications. Prentice-Hall, Englewood Cliffs, NJ (1982)Google Scholar
  74. 74.
    Green, M.: Third Generation Photovoltaics: Solar Cells for 2020 and Beyond. Physica E: Low-Dimensional Systems and Nanostructures 14(1-2), 65–70 (2002). DOI 10.1016/S1386-9477(02)00361-2CrossRefGoogle Scholar
  75. 75.
    Green, M.: Consolidation of Thin-Film Photovoltaic Technology: The Coming Decade of Opportunity. Progress in Photovoltaics: Research and Applications 14(5), 383–392 (2006). DOI 10.1002/pip.702CrossRefGoogle Scholar
  76. 76.
    Gritsch, M., Kosina, H., Grasser, T., Selberherr, S.: Revision of the Standard Hydrodynamic Transport Model for SOI Simulation. IEEE Trans.Electron Devices 49(10), 1814–1820 (2002). DOI 10.1109/TED.2002.803645CrossRefGoogle Scholar
  77. 77.
    Grubmüller, H.: Force Probe Molecular Dynamics Simulations. Springer Protocols 305 (2005). DOI 10.1007/978-1-59259-912-7_23Google Scholar
  78. 78.
    Gupta, N., Alapatt, G., Podila, R., Singh, R., Poole, K.: Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules. Intl. Journal of Photoenergy p. 13 (2009). DOI 10.1155/2009/154059Google Scholar
  79. 79.
    Gupta, S., Elias, M., Wen, X., Shapiro, J., L.Brillson: Detection of Clinical Relevant Levels of Protein Analyte UnderPhysiologicBuffer Using Planar Field Effect Transistors. Biosensors and Bioelectronics 24, 505–511 (2008). DOI 10.1016/j.bios.2008.05.011Google Scholar
  80. 80.
    Hahm, J., Lieber, C.: Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters 4(1), 51–54 (2004)CrossRefGoogle Scholar
  81. 81.
    Hall, R.: Electron-Hole Recombination in Germanium. Physical Review 87(2), 387 (1952). DOI 10.1103/PhysRev.87.387Google Scholar
  82. 82.
    Hänsch, W.: Carrier Transport Near the Si/SiO 2 Interface of a MOSFET. Solid-State Electron. 32, 839–849 (1989). DOI 10.1016/0038-1101(89)90060-9CrossRefGoogle Scholar
  83. 83.
    Hänsch, W.: The Drift Diffusion Equation and its Application in MOSFET Modeling. XII. Springer-Verlag (1991)Google Scholar
  84. 84.
    Hänsch, W., Miura-Mattausch, M.: The Hot-Electron Problem in Small Semiconductor Devices. J.Appl.Phys. 60(2), 650–656 (1986). DOI 10.1063/1.337408CrossRefGoogle Scholar
  85. 85.
    Harame, D., Bousse, L., Shott, J., Meindl, J.: Ion-Sensing Devices with Silicon Nitride and Borosilicate Glass Insulators. IEEE Trans.Electron Devices 34(8), 1700–1707 (1987)CrossRefGoogle Scholar
  86. 86.
    Harnois, M., Sagazan, O., Girard, A., Salaün, A.C., Mohammed-Brahim, T.: Low Concentrated DNA Detection by SGFET. In: Transducers & Eurosensors, pp. 1983–1986. Lyon, France (2007)Google Scholar
  87. 87.
    Hasnat, K., Yeap, C.F., Jallepalli, S., Hareland, S., Shih, W.K., Agostinelli, V., Tasch, A., Maziar, C.: Thermionic Emission Model of Electron Gate Current in Submicron NMOSFETs. IEEE Trans.Electron Devices 44(1), 129–138 (1997). DOI 10.1109/16.554802CrossRefGoogle Scholar
  88. 88.
    Heitzinger, C., Kennell, R., Klimeck, G., Mauser, N., McLennan, M., Ringhofer, C.: Modeling and Simulation of Field-Effect Biosensors (BioFETs) and Their Deployment on the nanoHUB. J. Phys.: Conf. Ser. 107, 012,004/1–12 (2008). DOI 10.1088/1742-6596/107/1/012004Google Scholar
  89. 89.
    Heitzinger, C., Klimeck, G.: Computational Aspects of the Three-Dimensional Feature-Scale Simulation of Silicon-Nanowire Field-Effect Sensors for DNA Detection. J.Comp.Electronics 6(1-3), 387–390 (2007). DOI 10.1007/s10825-006-0139-xCrossRefGoogle Scholar
  90. 90.
    van Herwaarden, A.: The Seebeck Effect in Silicon ICs. Sensors and Actuators 6(4), 245–254 (1984). DOI 10.1016/0250-6874(84)85020-9CrossRefGoogle Scholar
  91. 91.
    van Herwaarden, A., van Duyn, D., van Oudheusden, B., Sarro, P.: Integrated Thermopile Sensors. Sensors and Actuators A: Physical 22(1-3), 621–630 (1989). DOI 10.1016/0924-4247(89)80046-9CrossRefGoogle Scholar
  92. 92.
    van Herwaarden, A., Sarro, P.: Thermal Sensors Based on the Seebeck Effect. Sensors and Actuators 10(3-4), 321–346 (1986). DOI 10.1016/0250-6874(86)80053-1CrossRefGoogle Scholar
  93. 93.
    Hodgson, D.: Anisotropy of Thermoelectric Power in Bismuth Telluride. Tech. Rep. 377, Massachusetts Institute of Technology, Research Laboratory of Electronics (1961). hdl.handle.net/1721.1/4445
  94. 94.
    Holst, M., Saied, F.: Multigrid Solution of the Poisson-Boltzmann Equation. J. Comput. Chem. 14, 105–113 (1993)CrossRefGoogle Scholar
  95. 95.
    Holst, M., Saied, F.: Numerical Solution of the Nonlinear Poisson-Boltzmann Equation: Developing More Robust and Efficient Methods. J. Comput. Chem. 16, 337–364 (1995)CrossRefGoogle Scholar
  96. 96.
    Honsberg, C., Barnett, A.: UD-Led Team Sets Solar Cell Record, Joins DuPont on $100 Million Project. Press Release (2007). www.udel.edu/PR/UDaily/2008/jul/solar072307.html
  97. 97.
    Huang, C., Wang, T., Chen, C., Chang, M., Fu, J.: Modeling Hot-Electron Gate Current in Si MOSFET’s Using a Coupled Drift-Diffusion and Monte Carlo Method. IEEE Trans.Electron Devices 39(11), 2562–2568 (1992). DOI 10.1109/16.163464CrossRefGoogle Scholar
  98. 98.
    Ieong, M.K.: A Multii-Valley Hydrodynamic Transport Model for GaAs Extracted from Self-Consistent Monte Carlo Data. M.S. Thesis, University of Massachusetts (1993)Google Scholar
  99. 99.
    Im, H., Huang, X.., Gu, B., Choi, Y..: A Dielectric-Modulated Field-Effect Transistor for Biosensing. Nature Nanotechnology 2(7), 430–434 (2007)CrossRefGoogle Scholar
  100. 100.
    Institute for Microelectronics, TU Wien, Gußhausstraße 2729, 1040 Wien, Austria/Europe: Minimos-NT Device and Circuit Simulator Release 2.1. www.iue.tuwien.ac.at/software/minimosnt
  101. 101.
    Ioffe, A.: Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch London (1957). Originally published-U.S.S.R. Academy of Sciences, 1956.Google Scholar
  102. 102.
    Ioffe, A.: The Revival of Thermoelectricity. Scientific American (1958)Google Scholar
  103. 103.
    International Technology Roadmap for Semiconductors: 2009 Edition (2009). www.itrs.net/Links/2009ITRS/Home2009.htm
  104. 104.
    Iwata, H., Ohzone, T.: Numerical Solar Cell Simulation Including Multiple Diffused Reflection at the Rear Surface. Solar Energy Materials and Solar Cells 61(4), 353 – 363 (2000). DOI 10.1016/S0927-0248(99)00119-1CrossRefGoogle Scholar
  105. 105.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer-Verlag (1989)Google Scholar
  106. 106.
    Jacoboni, C., Reggiani, L.: The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Rev. Mod. Phys. 55(3), 645–705 (1983). DOI 10.1103/RevModPhys.55.645CrossRefGoogle Scholar
  107. 107.
    Jäger-Waldau, A.: Research, Solar cell Production and Market Implementation of Photovoltaics. Tech. rep., European Commission, DG Joint Research Centre, Institute for Energy, Renewable Energy Unit (2009). www.jrc.ec.europa.eu
  108. 108.
    Jaggi, R.: High-Field Drift Velocities in Silicon and Germanium. Helvetia Physica Acta 42, 941–943 (1969)Google Scholar
  109. 109.
    Jaggi, R., Weibel, H.: High-Field Electron Drift Velocities and Current Densities in Silicon. Helvetia Physica Acta 42, 631–632 (1969)Google Scholar
  110. 110.
    Jüngel, A.: Transport Equations for Semiconductors XVII, vol. 773. Springer-Verlag (2009)Google Scholar
  111. 111.
    Jungemann, C., Meinzerhagen, B.: Hierachical Device Simulation: The Monte Carlo Perspective. Springer-Verlag (2003)Google Scholar
  112. 112.
    Jungemann, C., Nguyen, C., Neinhüs, B., Decker, S., Meinerzhagen, B.: Improved Modified Local Density Approximation for Modeling of Size Quantization in NMOSFETs. In: Intl. Conf. on Modeling and Simulation of Microsystems, vol. 1, pp. 458–461 (2001)Google Scholar
  113. 113.
    Jungemann, C., Pham, A., Meinerzhagen, B., Ringhofer, C., Bollhöfer, M.: Stable Discretization of the Boltzmann Equation Based on Spherical Harmonics, Box Integration, and a Maximum Entropy Dissipation Principle. J.Appl.Phys. 100(2), 024502 (2006). DOI 10.1063/1.2212207CrossRefGoogle Scholar
  114. 114.
    Kabir, M., Ibrahim, Z., Sopian, K., Amin, N.: Effect of Structural Variations in Amorphous Silicon Based Single and Multi-Junction Solar Cells from Numerical Analysis. Solar Energy Materials and Solar Cells (2010). DOI 10.1016/j.solmat.2009.12.031Google Scholar
  115. 115.
    Kane, E.: Band Structure of Indium Antimonide. J.Phys.Chem.Solids 1(4), 249–261 (1957). DOI 10.1016/0022-3697(57)90013-6CrossRefGoogle Scholar
  116. 116.
    Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Goes, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications. J.Comp.Electronics 6(1), 179–182 (2007). DOI 10.1007/s10825-006-0077-7CrossRefGoogle Scholar
  117. 117.
    Karner, M., Wagner, M., Grasser, T., Kosina, H.: A Physically Based Quantum Correction Model for DG MOSFETs. In: Materials Research Society Spring Meeting (MRS), pp. 104–105 (2006)Google Scholar
  118. 118.
    Khitun, A., Balandin, A., Liu, J., Wang, K.: In-Plane Lattice Thermal Conductivity of a Quantum-Dot Superlattice. J.Appl.Phys. 88(2), 696–699 (2000). DOI 10.1063/1.373723CrossRefGoogle Scholar
  119. 119.
    Khitun, A., Liu, J., Wang, K.: Thermal Conductivity of Si ∕ Ge Quantum Dot Superlattices. In: Conf. on Nanotechnology, pp. 20–22 (2004). DOI 10.1109/NANO.2004.1392236Google Scholar
  120. 120.
    Kim, D., Gabor, A., Yelundur, V., Upadhyaya, A., Meemongkolkiat, V., Rohatgi, A.: String Ribbon Silicon Solar Cells with 17. 8% Efficiency. In: 3rd World Conf. on Photovoltaic Energy Conversion. Georgia Institute of Technology (2003). hdl.handle.net/1853/26154
  121. 121.
    Kim, W., Singer, S., Majumdar, A., Zide, J., Gossard, A., Shakouri, A.: Role of Nanostructures in Reducing Thermal Conductivity Below Alloy Limit in Crystalline Solids. In: Intl. Conf. on Thermoelectrics, pp. 9–12 (2005). DOI 10.1109/ICT.2005.1519874Google Scholar
  122. 122.
    Kittel, C.: Einführung in die Festkörperphysik, vol. 14. Oldenburg Wissenschaftsverlag (2006)Google Scholar
  123. 123.
    Kluska, S., Granek, F., Rüdiger, M., Hermle, M., Glunz, S.: Modeling and Optimization Study of Industrial n-Type High-Efficiency Back-Contact Back-Junction Silicon Solar Cells. Solar Energy Materials and Solar Cells 94(3), 568–577 (2010). DOI 10.1016/j.solmat.2009.11.025CrossRefGoogle Scholar
  124. 124.
    Knaipp, M.: Modellierung von Temperatureinflüssen in Halbleiterbauelementen. Dissertation, Technische Universität Wien (1998). www.iue.tuwien.ac.at/phd/knaipp
  125. 125.
    Kosik, R., Grasser, T., Entner, R., Dragosits, K.: On The Highest Order Moment Closure Problem [Semiconductor Device Modelling Applications]. In: Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004, vol. 1, pp. 118–121 (2004)Google Scholar
  126. 126.
    Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., Eichhorn, G., Geick, R.: Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi 2 Te 3. Phys.Stat.Sol.(b) 125(1), 131–138 (1984). DOI 10.1002/pssb.2221250114Google Scholar
  127. 127.
    Kuznetsov, V.L., Kuznetsova, L.A., Kaliazin, A.E., Rowe, D.M.: High Performance Functionally Graded and Segmented Bi 2 Te 3-Based Materials for Thermoelectric Power Generation. Journal of Material Science 37(14), 2893–2897 (2002). DOI 10.1023/A:1016092224833CrossRefGoogle Scholar
  128. 128.
    Landheer, D., Aers, G., McKinnon, W., Deen, M., Ranuárez, J.: Model for the Field Effect from Layers of Biological Macromolecules on the Gates of Metal-Oxide-Semiconductor Transistors. J.Appl.Phys. 98(4), 044,701–1 – 044,701–15 (2005)Google Scholar
  129. 129.
    Lang, C., Pucker, N.: Mathematische Methoden in der Physik, zweite erweiterte Auflage. Spektrum Akademischer Verlag (2005)Google Scholar
  130. 130.
    Lee, C.S., Tang, T.W., Navon, T.: Transport Models for MBTE. In: J. Miller (ed.) Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 261–265. Dublin Ireland: Boole (1989)Google Scholar
  131. 131.
    Lee, S., von Allmen, P.: Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride. Appl.Phys.Lett. 88(2), 022107 (2006). DOI 10.1063/1.2162863CrossRefGoogle Scholar
  132. 132.
    Lee, S.C., Tang, T.W.: Transport Coefficients for a Silicon Hydrodynamic Model Extracted from Inhomogeneous Monte-Carlo Calculations. Solid-State Electron. 35(4), 561–569 (1992). DOI 10.1016/0038-1101(92)90121-RMathSciNetCrossRefGoogle Scholar
  133. 133.
    Levermore, C.: Moment Closure Hierarchies for Kinetic Theories. Journal of Statistical Physics 83(5), 1021–1065 (1996). DOI 10.1007/BF02179552MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York Berlin Heidelberg (2001)MATHGoogle Scholar
  135. 135.
    Liu, W., nd G. Chen J.L. Liu, T.B.T., Wang, K.: Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices. Journal of Nanoscience and Nanotechnology 1, 39–42(4) (2001). DOI 10.1166/jnn.2001.013Google Scholar
  136. 136.
    Lombardi, C., Manzini, S., Saporito, A., Vanzi, M.: A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices. IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems 7(11), 1164–1171 (1988). DOI 10.1109/43.9186CrossRefGoogle Scholar
  137. 137.
    Ludwig, W.: Festkörperphysik. Akademische Verlagsgesellschaft Wiesbaden (1978)Google Scholar
  138. 138.
    Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press (2000)Google Scholar
  139. 139.
    Malm, U., Edoff, M.: 2D Device Modelling and Finite Element Simulations for Thin-Film Solar Cells. Solar Energy Materials and Solar Cells 93(6-7), 1066–1069 (2009). DOI 10.1016/j.solmat.2008.11.058CrossRefGoogle Scholar
  140. 140.
    Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer-Verlag (1990)Google Scholar
  141. 141.
    Masetti, G., Severi, M., Solmi, S.: Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon. IEEE Trans.Electron Devices 30, 764–769 (1983)CrossRefGoogle Scholar
  142. 142.
    Maycock, P.: Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys. Solid-State Electron. 10(3), 161–168 (1967). DOI 10.1016/0038-1101(67)90069-XGoogle Scholar
  143. 143.
    Meddins, H., Parrott, J.: The Thermal and Thermoelectric Properties of Sintered Germanium-Silicon Alloys. J.Phys.C:Solid State Phys. 9(7), 1263–1276 (1976). stacks.iop.org/0022-3719/9/1263 Google Scholar
  144. 144.
    Miele, A., Fletcher, R., Zaremba, E., Feng, Y., Foxon, C.T., Harris, J.J.: Phonon-Drag Thermopower and Weak Localization. Physical Review B 58(19), 13,181–13,190 (1998). DOI 10.1103/PhysRevB.58.13181Google Scholar
  145. 145.
    Mingo, N.: Thermoelectric Figure of Merit and Maximum Power Factor in III–V Semiconductor Nanowires. Appl.Phys.Lett. 84(14), 2652–2654 (2004). DOI 10.1063/1.1695629CrossRefGoogle Scholar
  146. 146.
    Muscato, O., Romano, V.: Simulation of Submicron Silicon Diodes with a Non-Parabolic Hydrodynamical Model Based on the Maximum Entropy Principle. In: Intl. Workshop on Computational Electronics, pp. 94–95 (2000). DOI 10.1109/IWCE.2000.869941Google Scholar
  147. 147.
    Neinhüs, B.: Hierarchische Bauelementsimulationen von Si/SiGe Hochfrequenztransistoren. Dissertation, Universität Bremen (2002)Google Scholar
  148. 148.
    Nguyen, C., Jungemann, C., Meinerzhagen, B.: Modeling of Size Quantization in Strained Si-nMOSFETs with the Improved Modified Local Density Approximation. In: NSTI Nanotechnology Conference and Trade Show, vol. 3, pp. 33–36 (2005)Google Scholar
  149. 149.
    Nolas, G., Cohn, J., Slack, G., Schujman, S.: Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications. Appl.Phys.Lett. 73(2), 178–180 (1998). DOI 10.1063/1.121747CrossRefGoogle Scholar
  150. 150.
    Nolas, G., Sharp, J., Goldsmid, H.: Thermoelectrics: Basic Principles and New Materials Developments. Springer-Verlag (2001)Google Scholar
  151. 151.
    Nolting, W.: Grundkurs Theoretische Physik 6: Statistische Physik, vol. XII. Springer-Verlag (2007)Google Scholar
  152. 152.
    NREL Solar Cell Sets World Efficiency Record at 40. 8 Percent. Press Release (2008). www.nrel.gov/news/press/2008/625.html
  153. 153.
    Golden, CO, USA: NREL Sets New CIGS Thin Film Efficiency Record. Press Release (2008). www.solarbuzz.com/news/NewsNATE50.htm
  154. 154.
    Ohl, R.: Light-Sensitive Electric Device (1946). www.freepatentsonline.com/2402662.html
  155. 155.
    Onsager, L.: Reciprocal Relations in Irreversible Processes. I. Physical Review 37(4), 405–426 (1931). DOI 10.1103/PhysRev.37.405MATHCrossRefGoogle Scholar
  156. 156.
    Paasch, G., Übensee, H.: A Modified Local Density Approximation. Electron Density in Inversion Layers. Phys.Stat.Sol.(b) 113(1), 165–178 (1982). DOI 10.1002/pssb.2221130116Google Scholar
  157. 157.
    Palankovski, V.: Simulation of Heterojunction Bipolar Transistors. Dissertation, Technische Universität Wien (2000). www.iue.tuwien.ac.at/phd/palankovski
  158. 158.
    Palankovski, V., Quay, R.: Analysis and Simulation of Heterostructure Devices. Springer-Verlag (2004)Google Scholar
  159. 159.
    Palestri, P., Mastrapasqua, M., Pacelli, A., King, C.: A Drift-Diffusion/Monte Carlo Simulation Methodology for Si 1 − x Ge x HBT Design. IEEE Trans.Electron Devices 49(7), 1242–1249 (2002). DOI 10.1109/TED.2002.1013282CrossRefGoogle Scholar
  160. 160.
    Park, K., Lee, S., Sohn, Y., Choi, S.: BioFET Sensor for Detection of Albumin in Urine. Electronic Letters 44(3) (2008)Google Scholar
  161. 161.
    Pejčinović, B., Tang, H., Egley, J., Logan, L., Srinivasan, G.: Two-Dimensional Tensor Temperature Extension of the Hydrodynamic Model and its Applications. IEEE Trans.Electron Devices 42(12), 2147–2155 (1995). DOI 10.1109/16.477773CrossRefGoogle Scholar
  162. 162.
    Peltier, J.: Nouvelles Experiences sur la Caloriecete des Courans Electrique. Ann. Chim. LVI, 371–387 (1834)Google Scholar
  163. 163.
    Pieters, B., Krc, J., Zeman, M.: Advanced Numerical Simulation Tool for Solar Cells - ASA5. In: Photovoltaic Energy Conversion, vol. 2, pp. 1513–1516 (2006). DOI 10.1109/WCPEC.2006.279758Google Scholar
  164. 164.
    Pirrung, M.: How to Make a DNA Chip. Angew. Chem. Intl. Ed. 41, 1276–1289 (2002)CrossRefGoogle Scholar
  165. 165.
    Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A., Schöning, M.J.: Possibilities and Limitations of Label-Free Detection of DNA Hybridization with Field-Effect-Based Devices. Sensors and Actuators, B: Chemical 111-112, 470–480 (2005)CrossRefGoogle Scholar
  166. 166.
    Pollock, D.: CRC Handbook of Thermoelectrics, Chapter: Thermoelectric Phenomena. CRC Press LLC (1994)Google Scholar
  167. 167.
    protein data bank: www.pdb.org
  168. 168.
    PV FAQ’s: What is the Energy Payback for PV? Press Release (2004). www.nrel.gov/docs/fy05osti/37322.pdf
  169. 169.
    Rahmat, K.: Simulation of Hot Carriers in Semiconductor Devices. Technical Report 591, Research Laboratory of Electronics, Massachusetts Institute of Technology (1995)Google Scholar
  170. 170.
    Rahmat, K., White, J., Antoniadis, D.: Computation of Drain and Substrate Currents in Ultra-Short-Channel nMOSFET’s Using the Hydrodynamic Model. IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems 12(6), 817–824 (1993). DOI 10.1109/43.229756CrossRefGoogle Scholar
  171. 171.
    Richou, F., Pelous, G., Lecrosnier, D.: Thermal Generation of Carriers in Gold-Doped Silicon. J.Appl.Phys. 51(12), 6252–6257 (1980). DOI 10.1063/1.327611CrossRefGoogle Scholar
  172. 172.
    Ringhofer, C., Heitzinger, C.: Multi-Scale Modeling and Simulation of Field-Effect Biosensors. ECS Transactions 14(1), 11–19 (2008). DOI 10.1149/1.2956012CrossRefGoogle Scholar
  173. 173.
    Roosbroeck, W.V.: Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Techn. J. 29, 560–607 (1950)Google Scholar
  174. 174.
    Rowe, D.: Electrical Properties of Hot-Pressed Germanium-Silicon-Boron Alloys. J.Phys.D:Appl. Phys. 8(9), 1092–1103 (1975). stacks.iop.org/0022-3727/8/1092 Google Scholar
  175. 175.
    Rowe, D.: CRC Handbook of Thermoelectrics. CRC Press LLC (1994)Google Scholar
  176. 176.
    Sadaka, M., Thean, A., Barr, A., Tekleab, D., Kalpat, S., White, T., Nguyen, T., Mora, R., Beckage, P., Jawarani, D., Zollner, S., Kottke, M., Liu, R., Canonico, M., Xie, Q., Wang, X., Parsons, S., Eades, D., Zavala, M., Nguyen, B., Mazure, C., Mogab, J.: Fabrication and Operation of sub-50 nm Strained-Si on Si 1 − x Ge x Insulator (SGOI) CMOSFETs. In: IEEE Intl. SOI Conf., pp. 209–211 (2004)Google Scholar
  177. 177.
    Sadovnikov, A., Roulston, D.: A Study of the Influence of Hydrodynamic Model Effects on Characteristics of Silicon Bipolar Transistors. COMPEL: The Intl. Journal for Computation and Mathematics in Electrical and Electronic Engineering 12(4), 245–262 (1993). DOI 10.1108/eb051803MATHCrossRefGoogle Scholar
  178. 178.
    Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport Coefficients from First-Principles Calculations. Physical Review B 68(12), 125,210 (2003). DOI 10.1103/PhysRevB.68.125210Google Scholar
  179. 179.
    Schenk, A.: Re-Examination of Physical Models in the Temperature Range 300 K − 700 K. Tech. Rep. 99, German Bundesministerium für Bildung und Forschung (2001)Google Scholar
  180. 180.
    Scherrer, H., Scherrer, S.: CRC Handbook of Thermoelectrics, Chapter: Bismulth Telluride, Antimony Telluride, and Their Solid Solutions. CRC Press LLC (1994)Google Scholar
  181. 181.
    Schöning, M.J.: “Playing Around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs. Sensors 5(3), 126–138 (2005). DOI 10.3390/s5030126Google Scholar
  182. 182.
    Schuss, Z., Nadler, B., Eisenberg, R.: Derivation of Poisson and Nernst-Planck Equations in a Bath and Channel from a Molecular Model. Physical Review E 64(3), 036,116 (2001). DOI 10.1103/PhysRevE.64.036116Google Scholar
  183. 183.
    Seebeck, T.J.: Über die magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Annalen der Physik 82(2), 133–160 (1826). DOI 10.1002/andp.18260820202CrossRefGoogle Scholar
  184. 184.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer-Verlag (1984)Google Scholar
  185. 185.
    Selberherr, S., Hänsch, W., Seavey, M., Slotboom, J.: The Evolution of the MINIMOS Mobility Model. Solid-State Electron. 33(11), 1425–1436 (1990). DOI 10.1016/0038-1101(90)90117-WCrossRefGoogle Scholar
  186. 186.
    Shinwari, M., Deen, M., Landheer, D.: Study of the Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET) with Applications in Biosensor Design. Microelectronics Reliability 47(12), 2025–2057 (2007). DOI 10.1016/j.microel.2006.10.003Google Scholar
  187. 187.
    Shockley, W.: Problems Related to p-n Junctions in Silicon. Solid-State Electron. 2(1), 35–67 (1961). DOI 10.1016/0038-1101(61)90054-5CrossRefGoogle Scholar
  188. 188.
    Shockley, W., Queisser, H.: Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J.Appl.Phys. 32(3), 510–519 (1961). DOI 10.1063/1.1736034CrossRefGoogle Scholar
  189. 189.
    Shockley, W., Read, W.T.: Statistics of the Recombinations of Holes and Electrons. Physical Review 87(5), 835–842 (1952). DOI 10.1103/PhysRev.87.835MATHCrossRefGoogle Scholar
  190. 190.
    Singh, J.: Physics of Semiconductors and their Heterostructures. McGraw-Hill, Inc. (1993)Google Scholar
  191. 191.
    Singh, M., Bhandari, C.: Thermoelectric Properties of Bismuth Telluride Quantum Wires. Solid State Communications 127(9-10), 649–654 (2003). DOI 10.1016/S0038-1098(03)00520-9CrossRefGoogle Scholar
  192. 192.
    Singh, R., Chandran, P., Grujicic, M., Poole, K., Vingnani, U., Ganapathi, S., Swaminathan, A., Jagannathan, P., Iyer, H.: Dominance of Silicon CMOS Based Semiconductor Manufacturing Beyond International Technology Roadmap. Semiconductor Fabtech 30, 104–113 (2006)Google Scholar
  193. 193.
    Singh, R., Gupta, N., Poole, K.: Global Green Energy Conversion Revolution in 21st Century Through Solid State Devices. In: Intl. Conf. on Microelectronics, pp. 45–54 (2008). DOI 10.1109/ICMEL.2008.4559221Google Scholar
  194. 194.
    Siwy, Z., Apel, P., Baur, D., Dobrev, D., Korchev, Y., Neumann, R., Spohr, R., Trautmann, C., Voss, K.O.: Preparation of Synthetic Nanopores with Transport Properties Analogous to Biological Channels. Surface Science 532-535, 1061–1066 (2003). DOI 10.1016/S0039-6028(03)00448-5CrossRefGoogle Scholar
  195. 195.
    Siwy, Z., Apel, P., Dobrev, D., Neumann, R., Spohr, R., Trautmann, C., Voss, K.: Ion Transport Through Asymmetric Nanopores Prepared by Ion Track Etching. Nucl. Instrum. and Meth. in Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 208, 143–148 (2003). DOI 10.1016/S0168-583X(03)00884-X. Ionizing Radiation and PolymersCrossRefGoogle Scholar
  196. 196.
    Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., Voss, K.: Electro-Responsive Asymmetric Nanopores in Polyimide with Stable Ion-Current Signal. Appl.Phys.A 76(5), 781–785 (2003). DOI 10.1007/s00339-002-1982-7Google Scholar
  197. 197.
    Siwy, Z., Gu, Y., Spohr, H.A., Baur, D., Wolf-Reber, A., Spohr, R., Apel, P., Korchev, Y.E.: Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. EPL (Europhysics Letters) 60(3), 349–355 (2002)Google Scholar
  198. 198.
    Siwy, Z., Fuliński, A.: Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters 89(19), 198,103 (2002). DOI 10.1103/PhysRevLett.89.198103Google Scholar
  199. 199.
    Skrabek, E., D.Trimmer: CRC Handbook of Thermoelectrics, Chapter: Properties of the General TAGS System. CRC Press LLC (1994)Google Scholar
  200. 200.
    Slack, G., Hussain, M.: The Maximum Possible Conversion Efficiency of Silicon-Germanium Thermoelectric Generators. J.Appl.Phys. 70(5), 2694–2718 (1991). DOI 10.1063/1.349385CrossRefGoogle Scholar
  201. 201.
    Song, J., Li, S., Huang, C., Anderson, T., Crisalle, O.: Modeling and Simulation of a \(CuGaS{e}_{2}/Cu(I{n}_{1-x},G{a}_{x})S{e}_{2}\) Tandem Solar Cell. In: Photovoltaic Energy Conversion, vol. 1, pp. 555–558 (2003). DOI 10.1109/WCPEC.2003.1305344Google Scholar
  202. 202.
    Span, G.: Thermoelectric Element (2008). Austrian Patent AT 410 492 B. Intl. Patent Application PCT/AT01/00123, Granted in USA, Russia, EuropeGoogle Scholar
  203. 203.
    Stern, E., Klemic, J., Routenberg, D., Wyrembak, P., Turner Evans, D., Hamilton, A., LaVan, D., Fahmy, T., Reed, M.: Lable-free Immunodetection with CMOS-compatible Semiconducting Nanowires. Nature Letters 445(1), 519–522 (2007). DOI 10.1038/nature05498CrossRefGoogle Scholar
  204. 204.
    Stettler, M., Alam, M., Lundstrom, M.: A Critical Examination of the Assumptions Underlying Macroscopic Transport Equations for Silicon Devices. IEEE Trans.Electron Devices 40(4), 733–740 (1993). DOI 10.1109/16.202785CrossRefGoogle Scholar
  205. 205.
    Stoletow, A.: Suite des recherches actino-electriques. Comptes Rendus CVII, 91 (1888)Google Scholar
  206. 206.
    Stoletow, A.: Sur une sorte de courants electriques provoques par les rayons ultraviolets. Comptes Rendus CVI (1888)Google Scholar
  207. 207.
    Stoletow, A.: Sur les courants actino-électriques dans l’air raréfié. Journal de Physique 9, 468 (1890)Google Scholar
  208. 208.
    Stratton, R.: Diffusion of Hot and Cold Electrons in Semiconductor Barriers. Physical Review 126(6), 2002–2014 (1962). DOI 10.1103/PhysRev.126.2002CrossRefGoogle Scholar
  209. 209.
    Stratton, R.: Semiconductor Current-Flow Equations (Diffusion and Degeneracy). IEEE Trans.Electron Devices 19(12), 1288–1292 (1972)CrossRefGoogle Scholar
  210. 210.
    Stryer, L.: Biochemistry 4th Edition. New York: W.H. Freeman and Company (1995)Google Scholar
  211. 211.
    Sugihara, S., Tomita, S., Asakawa, K., Suda, H.: High Performance Properties of Sintered Bi 2Te 3-Based Thermoelectric Material. In: Intl. Conf. on Thermoelectrics, pp. 46–51 (1996). DOI 10.1109/ICT.1996.553254Google Scholar
  212. 212.
    Tang, T., Gan, H.: Two Formulations of Semiconductor Transport Equations Based on Spherical Harmonic Expansion of the Boltzmann Transport Equation. IEEE Trans.Electron Devices 47(9), 1726–1732 (2000). DOI 10.1109/16.861583CrossRefGoogle Scholar
  213. 213.
    Tang, T., Ramaswamy, S., Nam, J.: An Improved Hydrodynamic Transport Model for Silicon. IEEE Trans.Electron Devices 40(8), 1469–1477 (1993). DOI 10.1109/16.223707CrossRefGoogle Scholar
  214. 214.
    Tang, T.W., Ieong, M.K.: Discretization of Flux Densities in Device Simulations Using Optimum Artificial Diffusivity. IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems 14(11), 1309–1315 (1995)CrossRefGoogle Scholar
  215. 215.
    Tasaki, H., Kim, W.Y., Hallerdt, M., Konagai, M., Takahashi, K.: Computer Simulation Model of the Effects of Interface States on High-Performance Amorphous Silicon Solar Cells. J.Appl.Phys. 63(2), 550–560 (1988). DOI 10.1063/1.340085CrossRefGoogle Scholar
  216. 216.
    Thoma, R., Emunds, A., Meinerzhagen, B., Peifer, H.J., Engl, W.: Hydrodynamic Equations for Semiconductors with Nonparabolic Band Structure. IEEE Trans.Electron Devices 38(6), 1343–1353 (1991). DOI 10.1109/16.81625CrossRefGoogle Scholar
  217. 217.
    Thomson, W.: On a Mechanical Theory of Thermoelectric Currents. Proc. of the Royal Society of Edinburgh pp. 91–98 (1851)Google Scholar
  218. 218.
    Tsutagawa, M., Michael, S.: Triple Junction \(InGaP/GaAS/Ge\) Solar Cell Optimization: The Design Parameters for a 36. 2% Efficient Space Cell Using Silvaco ATLAS Modeling & Simulation. In: Photovoltaic Specialists Conf., pp. 001,954–001,957 (2009). DOI 10.1109/PVSC.2009.5411544Google Scholar
  219. 219.
    University of New South Wales: Highest Silicon Solar Cell Efficiency Ever Reached. Press Release (2008). www.sciencedaily.com/releases/2008/10/081023100536.htm
  220. 220.
    Vasicek, M.: Advanced Macroscopic Transport Models. Dissertation, Technische Universität Wien (2009). www.iue.tuwien.ac.at/phd/vasicek
  221. 221.
    Ventura, D., Gnudi, A., Baccarani, G.: A Deterministic Approach to the Solution of the BTE in Semiconductors. La Rivista del Nuovo Cimento (1978-1999) 18(6), 1–33 (1995). DOI 10.1007/BF02743029Google Scholar
  222. 222.
    Villanueva, J., Diaz, V., Bolivar, S., Tejada, T., Rodriguez, E.: A Multijunction Solar Cell Simulation Program for the Development of Concentration Systems. IEEE Trans.Electron Devices pp. 262–265 (2007). DOI 10.1109/SCED.2007.384042Google Scholar
  223. 223.
    Vining, C.: A Model for the High-Temperature Transport Properties of Heavily Doped n-type Silicon-Germanium Alloys. J.Appl.Phys. 69(1), 331–341 (1991). DOI 10.1063/1.347717MathSciNetCrossRefGoogle Scholar
  224. 224.
    Wagner, M.: Simulation of Thermoelectric Devices. Dissertation, Technische Universität Wien (2007). www.iue.tuwien.ac.at/phd/wagner
  225. 225.
    Wagner, M., Karner, M., Cervenka, J., Vasicek, M., Kosina, H., Holzer, S., Grasser, T.: Quantum Correction for DG MOSFETs. J.Comp.Electronics 5(4), 397–400 (2006). DOI 10.1007/s10825-006-0032-7Google Scholar
  226. 226.
    Weinberg, I.: Phonon-Drag Thermopower in Cu-Al and Cu-Si Alloys. Physical Review 139(3A), A838–A843 (1965). DOI 10.1103/PhysRev.139.A838Google Scholar
  227. 227.
    Willner, I., Katz, E.: Bioelectronics: From Theory to Applications, 1 ed. Wiley-VCH (2005). www.worldcat.org/isbn/3527306900
  228. 228.
    Windbacher, T., Sverdlov, V., Selberherr, S.: Modeling of Low Concentrated Buffer DNA Detection with Suspend Gate Field-Effect Transistors (SGFET). In: Intl. Workshop on Computational Electronics, pp. 169–172 (2009)Google Scholar
  229. 229.
    Windbacher, T., Sverdlov, V., Selberherr, S., Heitzinger, C., Mausern, N., Ringhofer, C.: Study of the Properties of Biotin-Streptavidin Sensitive BioFETs. In: Intl. Conf. on Biomedical Electronics and Devices, pp. 24–30 (2009)Google Scholar
  230. 230.
    Wolff, P.: Theory of Electron Multiplication in Silicon and Germanium. Physical Review 95(6), 1415–1420 (1954). DOI 10.1103/PhysRev.95.1415CrossRefGoogle Scholar
  231. 231.
    Wood, C.: Materials for Thermoelectric Energy Conversion. Reports on Progress in Physics 51(4), 459–539 (1988). stacks.iop.org/0034-4885/51/459
  232. 232.
    Wu, D.L., Fan, R., Yang, P., Majumdar, A.: Thermal Conductivity of Si ∕ SiGe Superlattice Nanowires. Appl.Phys.Lett. 83(15), 3186–3188 (2003). DOI 10.1063/1.1619221Google Scholar
  233. 233.
    Wu, M.W., Horing, N.J.M., Cui, H.L.: Phonon-Drag Effects on Thermoelectric Power. Physical Review B 54(8), 5438–5443 (1996). DOI 10.1103/PhysRevB.54.5438CrossRefGoogle Scholar
  234. 234.
    Xu, J., Luo, X., Chen, H.: Analytical Aspects of FET-Based Biosensors. Frontiers in Bioscience 10, 420–430 (2005)CrossRefGoogle Scholar
  235. 235.
    Yang, R., Chen, G.: Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites. Physical Review B 69(19), 195,316 (2004). DOI 10.1103/PhysRevB.69.195316Google Scholar
  236. 236.
    Yang, R., Chen, G.: Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites. Materials Integration 18, 1–12 (2006)Google Scholar
  237. 237.
    Yates, D., Levine, S., Healy, T.: Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. Journal of the Chemical Society 70, 1807–1818 (1974). DOI 10.1039/F19747001807Google Scholar
  238. 238.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays. Nature Biotechnology 23(10), 1294–1301 (2005)CrossRefGoogle Scholar
  239. 239.
    Zhitinskaya, M., Nemov, S., Svechnikova, T., Luk’yanova, L., Konstantinov, P., Kutasov, V.: Thermal Conductivity of Bi 2 Te 3: Sn and the Effect of Codoping by Pb and I Atoms. Physics of the Solid State 45(7), 1251–1253 (2003). DOI 10.1134/1.1594237Google Scholar
  240. 240.
    Zhou, J.: Thermal and Thermoelectric Transport Measurements of One-Dimensional Nanostructures. Ph.D. thesis, University of Texas at Austin (2005)Google Scholar
  241. 241.
    Zhou, J., Zhang, L., Leng, Y., Tsao, H.K., Sheng, Y.J., Jiang, S.: Unbinding of the Streptavidin-Biotin Complex by Atomic Force Microscopy: A Hybrid Simulation Study. J.Chem.Phys. 125(10), 104905 (2006). DOI 10.1063/1.2337629CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thomas Windbacher
    • 1
  • Viktor Sverdlov
  • Siegfried Selberherr
  1. 1.Institute for MicroelectronicsViennaAustria

Personalised recommendations