Skip to main content

Evaluating Whether a Module is Preserved in Another Network

  • 3202 Accesses

Abstract

In network applications, one is often interested in studying whether modules are preserved across multiple networks. For example, to determine whether a pathway of genes is perturbed in a certain condition, one can study whether its connectivity pattern is no longer preserved. Non-preserved modules can be either biologically uninteresting (e.g., reflecting data outliers) or interesting (e.g., reflecting species-specific modules). An intuitive approach for studying module preservation is to cross-tabulate module membership. But this approach often cannot address questions about the preservation of connectivity patterns between nodes. Thus, cross-tabulation-based approaches often fail to recognize that important aspects of a network module are preserved. Cross-tabulation methods make it difficult to argue that a module is not preserved. The weak statement (“the reference module does not overlap with any of the identified test set modules”) is less relevant in practice than the strong statement (“the module cannot be found in the test network irrespective of the parameter settings of the module detection procedure”). Network concepts allow one to determine whether a module is preserved and reproducible in another network. Module preservation statistics have important applications, e.g., the wiring of apoptosis genes in a human cortical network differs from that in chimpanzees. It is advantageous to aggregate multiple preservation statistics into summary preservation statistics, e.g., Zsummary and medianRank. Our applications show that the correlation structure underlying correlation networks facilitates the definition of particularly powerful module preservation statistics. Evaluating module preservation is in general different from evaluating cluster preservation. However, when modules are defined as clusters, then close relationships exist with cluster preservation statistics. This chapter describes results from a collaboration with Peter Langfelder et al. (Plos Comput Biol 7(1):e1001057, 2011).

Keywords

  • Composite Statistic
  • Preservation Statistic
  • Correlation Network
  • Reference Network
  • Test Network

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-8819-5_9
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-8819-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9

References

  • Arora G, Polavarapu N, McDonald JF (2009) Did natural selection for increased cognitive ability in humans lead to an elevated risk of cancer? Med Hypotheses 73(3):453–456

    CrossRef  PubMed  Google Scholar 

  • Bailey TA, Dubes R (1982) Cluster validity profiles. Pattern Recognit 15(2):61–83

    CrossRef  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta – Molecular Cell Research 1793(6):933–940

    Google Scholar 

  • Cai C, Langfelder P, Fuller TF, Oldham M, Luo R, van den Berg L, Ophoff R, Horvath S (2010) Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics 11(1):589

    CrossRef  PubMed  Google Scholar 

  • Cerpa W, Toledo EM, VarelaNallar L, Inestrosa NC (2009) The role of Wnt signaling in neuroprotection. Drug News Perspect 22(10):579–591

    CrossRef  CAS  PubMed  Google Scholar 

  • Chen G, Jaradat SA, Banerjee N, Tanaka TS, Ko MS, Zhang MQ (2002) Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data. Stat Sin 12:241–262

    Google Scholar 

  • Chen LS, EmmertStreib F, Storey JD (2007b) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol 8:R219

    CrossRef  PubMed  Google Scholar 

  • Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1(1):24

    CrossRef  PubMed  Google Scholar 

  • Dudoit S, Fridlyand J (2002) A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 3(7):RESEARCH0036

    Google Scholar 

  • Fuller TF, Ghazalpour A, Aten JE, Drake T, Lusis AJ, Horvath S (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 18(6–7):463–472

    CrossRef  PubMed  Google Scholar 

  • Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, Schadt EE, Thomas A, Drake TA, Lusis AJ, Horvath S (2006) Integrating genetics and network analysis to characterize genes related to mouse weight. PloS Genet 2(2):8

    CrossRef  Google Scholar 

  • Greer PL, Greenberg ME (2008) From synapse to nucleus: Calcium-dependent gene transcription in the control of synapse development and function. Neuron 59(6):846–860

    CrossRef  CAS  PubMed  Google Scholar 

  • Hardin J, Mitani A, Hicks L, VanKoten B (2007) A robust measure of correlation between two genes on a microarray. BMC Bioinformat 8(1):220

    CrossRef  Google Scholar 

  • Horvath S, Dong J (2008) Geometric interpretation of gene co-expression network analysis. PLoS Comput Biol 4(8):e1000117

    CrossRef  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CrossRef  CAS  PubMed  Google Scholar 

  • Kapp AV, Tibshirani R (2007) Are clusters found in one dataset present in another dataset? Biostat 8(1):9–31

    CrossRef  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: An introduction to cluster analysis. Wiley, New York

    CrossRef  Google Scholar 

  • Keller MP, Choi YJ, Wang P, Belt Davis D, Rabaglia ME, Oler AT, Stapleton DS, Argmann C, Schueler KL, Edwards S, Steinberg HA, Chaibub Neto E, Kleinhanz R, Turner S, Hellerstein MK, Schadt EE, Yandell BS, Kendziorski C, Attie AD (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18(5):706–716

    CrossRef  CAS  PubMed  Google Scholar 

  • Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do H, Weiss G, Enard W, Heissig F, Arendt T, NieseltStruwe K, Eichler EE, Paabo S (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14(8):1462–1473

    CrossRef  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1(1):54

    CrossRef  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    CrossRef  PubMed  Google Scholar 

  • Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is my network module preserved and reproducible? Plos Comput Biol 7(1):e1001057

    CrossRef  CAS  PubMed  Google Scholar 

  • McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18(11):1462–1469

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller JA, Horvath S, Geschwind DH (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA 107(28):12698–12703

    CrossRef  CAS  PubMed  Google Scholar 

  • van Nas A, GuhaThakurta D, Wang SS, Yehya N, Horvath S, Zhang B, Ingram-Drake L, Chaudhuri G, Schadt EE, Drake TA, Arnold AP, Lusis AJ (2009) Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinology 150(3):1235–1249

    PubMed  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, FledelAlon A, Tanenbaum DM, Civello D, White TJ, Sninsky J, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170

    CrossRef  PubMed  Google Scholar 

  • Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103(47):17973–17978

    CrossRef  CAS  PubMed  Google Scholar 

  • Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P (2009) A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 5(9):e1000642

    CrossRef  PubMed  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–56

    CrossRef  Google Scholar 

  • Samuels IS, Saitta SC, Landreth GE (2009) MAPing CNS development and cognition: An ERKsome process. Neuron 61(2):160–167

    CrossRef  CAS  PubMed  Google Scholar 

  • Shamir R, Sharan R (2001) Algorithmic approaches to clustering gene expression data. In: Current topics in computational biology. The MIT, Cabridge, MA, pp 269–300

    Google Scholar 

  • Tibshirani R, Walther G (2005) Cluster validation by prediction strength. J Comput Graph Stat 14:511–528

    CrossRef  Google Scholar 

  • Traiffort E, Angot E, Ruat M (2010) Sonic Hedgehog signaling in the mammalian brain. J Neurochem 113(3):576–590

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang J, Zhang S, Wang Y, Chen L, Zhang XS (2009) Disease-aging network reveals significant roles of aging genes in connecting genetic diseases. PLoS Comput Biol 5(9):e1000521

    CrossRef  PubMed  Google Scholar 

  • Wilcox RR (1997) Introduction to robust estimation and hypothesis testing. Academic, San Diego, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Horvath .

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horvath, S. (2011). Evaluating Whether a Module is Preserved in Another Network. In: Weighted Network Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8819-5_9

Download citation