Skip to main content

Correlation and Gene Co-Expression Networks

  • Chapter
  • First Online:
Weighted Network Analysis

Abstract

A correlation network is a network whose adjacency matrix is constructed on the basis of pairwise correlations between numeric vectors. The numeric vectors may represent observed quantitative measurements of variables. For example, the gene expression levels (transcript abundances) across different conditions can be represented by a numeric vector. In general, the relationship between a pair of numeric vectors can be measured in many ways, in particular, using a correlation coefficient (e.g., the Pearson-, Spearman-, or biweight mid-correlation) or using the concordance index. Mouse gene expression data are used to illustrate how network concepts can be used to describe the pairwise relationships among gene expression profiles. While cluster trees and heat maps can be used to visualize relationships between variables, concepts of correlation networks can be used to quantify them. Brain cancer gene expression data are used to illustrate the topological effects of hard- and soft-thresholding. We provide an overview of weighted gene coexpression network analysis and different gene network (re-)construction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  PubMed  CAS  Google Scholar 

  • Barrett CL, Palsson BO (2006) Iterative reconstruction of transcriptional regulatory networks: An algorithmic approach. PLoS Comput Biol 2(5):e52

    Article  PubMed  Google Scholar 

  • Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390

    Article  PubMed  CAS  Google Scholar 

  • Butte AJ, Kohane IS (2000) Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurments. Pac Symp Biocomput 5:418–429

    Google Scholar 

  • Butte A, Tamayo P, Slonim D, Golub T, Kohane I (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182–12186

    Article  PubMed  CAS  Google Scholar 

  • Cabusora L, Sutton E, Fulmer A, Forst CV (2005) Differential network expression during drug and stress response. Bioinformatics 21(12):2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Carlson M, Zhang B, Fang Z, Mischel P, Horvath S, Nelson SF (2006) Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks. BMC Genomics 7(7):40

    Article  PubMed  Google Scholar 

  • Carter SL, Brechbuler CM, Griffin M, Bond AT (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250

    Article  PubMed  CAS  Google Scholar 

  • Cokus S, Rose S, Haynor D, GronbechJensen N, Pellegrini M (2006) Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinform 7:381

    Article  Google Scholar 

  • D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726

    Article  PubMed  Google Scholar 

  • Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1(1):24

    Article  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Fuller TF, Ghazalpour A, Aten JE, Drake T, Lusis AJ, Horvath S (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 18(6–7): 463–472

    Article  PubMed  Google Scholar 

  • Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103(34):12741–12746

    Article  PubMed  CAS  Google Scholar 

  • Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, Schadt EE, Thomas A, Drake TA, Lusis AJ, Horvath S (2006) Integrating genetics and network analysis to characterize genes related to mouse weight. PloS Genet 2(2):8

    Article  Google Scholar 

  • Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  PubMed  CAS  Google Scholar 

  • Hardin J, Mitani A, Hicks L, VanKoten B (2007) A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 8(1):220

    Article  PubMed  Google Scholar 

  • Harrell F (2001) Regression modeling strategies, corrected edition. Springer, New York

    Book  Google Scholar 

  • Horvath S, Dong J (2008) Geometric interpretation of gene co-expression network analysis. PLoS Comput Biol 4(8):e1000117

    Article  PubMed  Google Scholar 

  • Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Shu Q, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a novel molecular target. Proc Natl Acad Sci USA 103(46):17402–17407

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23(13):i222–i229

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, MarinoRamirez L, Wolf YI, Koonin EV (2004) Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol 21(11):2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Keller MP, Choi YJ, Wang P, Belt Davis D, Rabaglia ME, Oler AT, Stapleton DS, Argmann C, Schueler KL, Edwards S, Steinberg HA, Chaibub Neto E, Kleinhanz R, Turner S, Hellerstein MK, Schadt EE, Yandell BS, Kendziorski C, Attie AD (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18(5):706–716

    Article  PubMed  CAS  Google Scholar 

  • Langfelder P, Horvath S (2011) Fast R functions for robust correlations and hierarchical clustering. J Stat Software. In press

    Google Scholar 

  • Lim WK, Wang K, Lefebvre C, Califano A (2007) Comparative analysis of microarray normalization procedures: Effects on reverse engineering gene networks. Bioinformatics 23(13): i282–i288

    Article  PubMed  CAS  Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl. 1):S7

    Article  Google Scholar 

  • Mason M, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10(1):327

    Article  PubMed  Google Scholar 

  • Miller JA, Horvath S, Geschwind DH (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA 107(28):12698–12703

    Article  PubMed  CAS  Google Scholar 

  • Mumford JA, Horvath S, Oldham MC, Langfelder P, Geschwind DH, Poldrack RA (2010) Detecting network modules in fMRI time series: A weighted network analysis approach. NeuroImage 52(4):1465–1476

    Article  PubMed  Google Scholar 

  • Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer on learning in bayesian networks for computational biology. PLoS Comput Biol 3(8):e129

    Article  PubMed  Google Scholar 

  • Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103(47):17973–17978

    Article  PubMed  CAS  Google Scholar 

  • Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11(11):1271–1282

    Article  PubMed  CAS  Google Scholar 

  • Perkins TJ, Jaeger J, Reinitz J, Glass L (2005) Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput Biol 2(5):e51

    Article  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2007) Orthologous transcription factors in bacteria have different functions and regulate different genes. PLoS Comput Biol 3(9):e175

    Article  Google Scholar 

  • Shieh G, Chen CM, Yu CY, Huang J, Wang WF, Lo YC (2008) Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling. BMC Bioinform 9(1):134

    Article  Google Scholar 

  • Smith GD (2006) Randomized by (your) god: Robust inference from an observational study design. J Epidemiol Community Health 60:382–388

    Article  PubMed  Google Scholar 

  • Snel B, van Noort V, Huynen MA (2004) Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes. Nucleic Acids Res 32(16):4725–4731

    Article  PubMed  CAS  Google Scholar 

  • van Someren EP, Wessels LF, Backer E, Reinders MJ (2002) Genetic network modeling. Pharmacogenomics 3(4):507–525

    Article  PubMed  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297

    PubMed  CAS  Google Scholar 

  • Steffen M, Petti A, Aach J, D’haeseleer P, Church G (2002) Automated modelling of signal transduction networks. BMC Bioinform 3(1):34

    Article  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  PubMed  CAS  Google Scholar 

  • Swindell W (2007) Gene expression profiling of long-lived dwarf mice: Longevity-associated genes and relationships with diet, gender and aging. BMC Genomics 8(1):353

    Article  PubMed  Google Scholar 

  • Thakar J, Pilione M, Kirimanjeswara G, Harvill ET, Albert R (2007) Modeling systems-level regulation of host immune responses. PLoS Comput Biol 3(6):e109

    Article  PubMed  Google Scholar 

  • Voy BH, Scharff JA, Perkins AD, Saxton AM, Borate B, Chesler EJ, Branstetter LK, Langston MA (2006) Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Comput Biol 2(7):e89

    Article  PubMed  Google Scholar 

  • Wang J, Zhang S, Wang Y, Chen L, Zhang XS (2009) Disease-aging network reveals significant roles of aging genes in connecting genetic diseases. PLoS Comput Biol 5(9):e1000521

    Article  PubMed  Google Scholar 

  • Wang S, Yehya N, Schadt EE, Drake TA, Lusis AJ (2006) Genetic and genomic analysis of fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2(2):e15

    Article  PubMed  Google Scholar 

  • Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Somerville C, Loraine A (2006) Transcriptional coordination of the metabolic network in arabidopsis. Plant Physiol 142(2):762–774

    Article  PubMed  CAS  Google Scholar 

  • Weston D, Gunter L, Rogers A, Wullschleger S (2008) Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2(1):16

    Article  PubMed  Google Scholar 

  • Wiggins C, Nemenman I (2003) Process pathway inference via time series analysis. Exp Mech 43(3):361–370

    Article  Google Scholar 

  • Wilcox RR (1997) Introduction to robust estimation and hypothesis testing. Academic, San Diego, CA

    Google Scholar 

  • Zhang B, Horvath S (2005) General framework for weighted gene coexpression analysis. Stat Appl Genet Mol Biol 4:17

    Google Scholar 

  • Zhou X, Kao MJ, Wong WH (2002) Transitive functional annotation by shortest path analysis of gene expression data. Proc Natl Acad Sci USA 99(20):12783–12788

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Horvath .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horvath, S. (2011). Correlation and Gene Co-Expression Networks. In: Weighted Network Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8819-5_5

Download citation

Publish with us

Policies and ethics