Skip to main content

Structural Equation Models and Directed Networks

  • Chapter
  • First Online:
Weighted Network Analysis

Abstract

Undirected networks (encoded in symmetric adjacency matrices) cannot be used to describe causal relationships between random variables. Instead, causal information is encoded by directed networks where the arrow A → B indicates that variable A causally influences variable B. We refer to the process of assigning a causal direction to edges in an association network as “edge orienting”. We review structural equation model (SEM)-based approaches for constructing directed networks between random variables. SEMs lead to predictions about the variance–covariance matrices of the observed variables, which is why they are also known as covariance structure models. We review likelihood-based approaches for evaluating the fit of a structural equation model. We provide a short review of SEMs and show how these techniques can be used for defining directed networks. In particular, we describe how local structural equations based on causal anchors can be used to infer causal networks among variables. Causal networks have been used in systems genetics applications for inferring causal relationships based on genetic markers. The network edge orienting (NEO) R software and method can be used to orient the edges of correlation networks (aka. quantitative trait networks) if the edges can be anchored to causal anchors (e.g., genetic polymorphisms). This section reviews and extends work with Jason Aten and Jake Lusis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1973) Information theory as the extension of the maximum likelihood principle. Akademiai Kiado, Budapest, Hungary, pp 267–281

    Google Scholar 

  • Aten J, Fuller T, Lusis AJ, Horvath S (2008) Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Syst Biol 2(1):34

    Article  PubMed  Google Scholar 

  • Bentler PM (2006) EQS 6 structural equations program manual. Multivariate Software, Inc, Encino, CA

    Google Scholar 

  • Chen J, Xu H, Aronow BJ, Jegga AG (2007a) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinform 8:392

    Article  Google Scholar 

  • Chen LS, EmmertStreib F, Storey JD (2007b) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol 8:R219

    Article  PubMed  Google Scholar 

  • Cooper GF (1997) A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Min Knowl Discov 1:203–224

    Article  Google Scholar 

  • Cribbie RA (2000) Evaluating the importance of individual parameters in structural equation modeling: The need for type I error control. Pers Individ Dif 29:567–577

    Article  Google Scholar 

  • Cribbie RA (2007) Multiplicity control in structural equation modeling. Struct Equ Model 14(1):98–112

    Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson A, Zink F, Zhu J, Carlson S, Helgason A, Walters G, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir G, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson K, Stefansson H, Fossdal R, Kristjansson K, Gislason H, Stefansson T, Leifsson B, Thorsteinsdottir U, Lamb J, Gulcher J, Reitman M, Kong A, Schadt E, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452(7186):423–428

    Article  PubMed  CAS  Google Scholar 

  • Farber CR, vanNas A, Ghazalpour A, Aten JE, Doss S, Sos B, Schadt EE, IngramDrake L, Davis RC, Horvath S, Smith DJ, Drake TA, Lusis AJ (2009) An integrative genetics approach to identify candidate genes regulating bone density: Combining linkage, gene expression and association. J Bone Miner Res 1:105–16

    Article  Google Scholar 

  • Fox J (1984) Linear structural-equation models. In: Linear statistical models and related Methods, vol. 4. Wiley, New York

    Google Scholar 

  • Fox J (2006) Structural equation modeling with the sem package in R. Struct Equ Model 13:465–486

    Article  Google Scholar 

  • Geier F, Timmer J, Fleck C (2007) Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Syst Biol 1:11

    Article  PubMed  Google Scholar 

  • Gjuvsland A, Hayes B, Meuwissen T, Plahte E, Omholt S (2007) Nonlinear regulation enhances the phenotypic expression of trans-acting genetic polymorphisms. BMC Syst Biol 1(1):32

    Article  PubMed  Google Scholar 

  • Inouye M, Silander K, Hamalainen E, Salomaa V, Harald K, Jousilahti P, Mannista S, Eriksson JG, Saarela J, Ripatti S, Perola M, van Ommen GJB, Taskinen MR, Palotie A, Dermitzakis ET, Peltonen L (2010) An immune response network associated with blood lipid levels. PLoS Genet 6(9):e1001113

    Article  PubMed  Google Scholar 

  • Jordan MI (1998) Learning in graphical models. The MIT, Cabridge, MA

    Book  Google Scholar 

  • Kline RB (2005) Principles and practice of structural equation modeling. The Guilford, New York, NY

    Google Scholar 

  • Korb KB, Nicholson AE (2004) Bayesian artifical intelligence. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Kulp DC, Jagalur M (2006) Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7:125

    Article  PubMed  Google Scholar 

  • Lander EJ, Kruglyak L (1995) Genetic dissection of complex traits: Guidelines for interpretation and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Li R, Tsaih SW, Shockley K, Stylianou IM, Wegedal J, Paigen B, Churchill GA (2006) Structural model analysis of multiple quantitative traits. PLos Genet 2(7):(e114) 1046–1057

    Google Scholar 

  • Loehlin JC (2004) Latent variable models, 4th edn. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  • Lusis AJ (2006) A thematic review series: Systems biology approaches to metabolic and cardiovascular disorders. J Lipid Res 47(9):1887–1890

    Article  PubMed  CAS  Google Scholar 

  • Mounier C, Posner BI (2006) Transcriptional regulation by insulin: From the receptor to the gene. Can J Physiol Pharmacol 84:713–724

    Article  PubMed  CAS  Google Scholar 

  • Neto CE, Ferrara CT, Attie AD, Yandell BS (2008) Inferring causal phenotype networks from segregating populations. Genetics 179(2):1089–1100

    Article  Google Scholar 

  • Neto CE, Keller MP, Attie AD, Yandell BS (2010) Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann Appl Stat 4(1):320–339

    Article  PubMed  Google Scholar 

  • Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1:37

    Article  PubMed  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers, Inc., San Francisco, CA

    Google Scholar 

  • Pearl J (2000) Causality: Models, reasoning, and inference. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P (2009) A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 5(9):e1000642

    Article  PubMed  Google Scholar 

  • Presson AP, Sobel EM, Papp JC, Suarez CJ, Whistler T, Rajeevan MS, Vernon SD, Horvath S (2008) Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst Biol 2:95

    Article  PubMed  Google Scholar 

  • Schadt EE, Lamb J, Yang X, Zhu J, Edwards J, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37(7):710–717

    Article  PubMed  CAS  Google Scholar 

  • Schaefer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764

    Article  CAS  Google Scholar 

  • Shipley B (2000a) Cause and correlation in biology, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Shipley B (2000b) A new inferential test for path models based on directed acyclic graphs. Struct Equ Model 7:206–218

    Article  Google Scholar 

  • Sieberts SS, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18(6):389–401

    Article  PubMed  Google Scholar 

  • Smith GD (2006) Randomized by (your) god: Robust inference from an observational study design. J Epidemiol Community Health 60:382–388

    Article  PubMed  Google Scholar 

  • Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search, 2nd edn. The MIT, Cambridge, MA

    Google Scholar 

  • Steiger JH, Fouladi RT (1997) What if there were no significance tests? Erlbaum, Mahwah, NJ

    Google Scholar 

  • Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, Sachs JR, Schadt EE (2007) Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 3(4):0692–0703 (e69)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Horvath .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horvath, S. (2011). Structural Equation Models and Directed Networks. In: Weighted Network Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8819-5_11

Download citation

Publish with us

Policies and ethics