Neurodynamics and Evolutionary Robotics

Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 1)

Abstract

The next chapter presents the essential tools required for the interpretation of the subsequent chapters; neurodynamics and evolutionary robotics. The presentation of neurodynamics is visual rather than formal, and introduces the concepts of attractor, parameter space, and bifurcation. In addition the algorithm used for the evolutionary robotics experiments, ENS3 is swiftly introduced.

References

  1. 1.
    Amari S (1972) Characteristics of random nets of analog neuron-like elements. IEEE Trans Syst Man and Cybern 2:643–57CrossRefGoogle Scholar
  2. 2.
    Beer R (1998) Framing the debate between computational and dynamical approaches to cognitive science. Behav Brain Sci 21(05):630–630CrossRefGoogle Scholar
  3. 3.
    Beer R, Gallagher J (1992) Evolving dynamical neural networks for adaptive behavior. Adapt Behav 1(1):91–122CrossRefGoogle Scholar
  4. 4.
    Di Paolo E, Noble J, Bullock S (2000) Simulation models as opaque thought experiments. In: Artificial life VII: Proceedings of the seventh international conference on artificial life, MIT, Cambridge, pp 497–506Google Scholar
  5. 5.
    Di Paolo E, Rohde M, Iizuka H (2008) Sensitivity to social contingency or stability of interaction? Modelling the dynamics of perceptual crossing. New Ideas Psychol 26(2):278–294CrossRefGoogle Scholar
  6. 6.
    Dieckmann U (1995) Coevolutionary dynamics of stochastic replicator systems. PhD thesis, Forschungszenter JülichGoogle Scholar
  7. 7.
    Floreano D, Zufferey JC, Nicoud JD (2005) From wheels to wings with evolutionary spiking circuits. Artif Life 11(1–2):121–138. URL http://www.mitpressjournals.org/doi/abs/10.1162/1064546053278900 Google Scholar
  8. 8.
    Ghosh A, Rho Y, McIntosch R A Rm Kötter, Jirsa VK (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4(10)Google Scholar
  9. 9.
    Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, BerlinGoogle Scholar
  10. 10.
    Harvey I, Paolo ED, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: A new scientific tool for studying cognition. Artif Life 11(1–2):79–98. URL http://www.mitpressjournals.org/doi/abs/10.1162/1064546053278991 Google Scholar
  11. 11.
    Hülse M, Ghazi-Zahedi K, Pasemann F (2002) Dynamical neural schmitt trigger for robot control. In: Dorronsoro(Ed) JR (ed) ICANN, vol ICANN 2002, LNCS 2415, Springer, Berlin, pp 783–788Google Scholar
  12. 12.
    Hülse M, Wischmann S, Pasemann F (2004) Structure and function of evolved neuro-controllers for autonomous robots. Conn Sci 16(4):249–266CrossRefGoogle Scholar
  13. 13.
    Jaeger H (2001a) The “echo state” approach to analysing and training recurrent neural networks. Tech. Rep. GMD Report 148, German National Research Center for Information Technology. URL http://www.faculty.iu-bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf
  14. 14.
    Jaeger H (2001) Short term memory in echo state networks. Tech. Rep. GMD Report 152, German National Research Center for Information Technology. URL http://www.faculty.iu-bremen.de/hjaeger/pubs/STMEchoStatesTechRep.pdf
  15. 15.
    Jaegger H, Maas W, Markram H (2007) special issue: Echo state networks and liquid state machines. Neural Netw 20(3):290–297CrossRefGoogle Scholar
  16. 16.
    Lassabe N, Luga H, Duthen Y (2006) Evolving creatures in virtual ecosystems. Lect Notes Comput Sci 4282:11CrossRefGoogle Scholar
  17. 17.
    Maas W, Natschlaeger T, Markram H (2002) A fresh look at real-time computation in recurrent neural circuitsGoogle Scholar
  18. 18.
    Molter C, Salihoglu U, Bersini H (2007) The road to chaos by time-asymmetric hebbian learning in recurrent neural networks. Neural Comput 19:80–110PubMedCrossRefGoogle Scholar
  19. 19.
    Nolfi S, Floreano D (2004) Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Bradford Book, Cambridge, MAGoogle Scholar
  20. 20.
    Ogai Y, Ikegami T (2008) Microslip as a Simulated Artificial Mind. Adapt Behav 16(2): 129–147CrossRefGoogle Scholar
  21. 21.
    Pasemann F (1993) Discrete dynamics of two neuron networks. Open Syst Inform Dyn 2(1):49–66CrossRefGoogle Scholar
  22. 22.
    Pasemann F (1995) Characterization of periodic attractors in neural ring networks. Neural Netw (8):421–441CrossRefGoogle Scholar
  23. 23.
    Pasemann F (1996) Reprasentation ohne Reprasentation-Uberlegungen zu einer Neurodynamik modularer kognitiver Systeme. Interne Reprasentationen-Neue Konzepte der Hirnforschung, pp 42–91Google Scholar
  24. 24.
    Pasemann F (1998) Evolving neurocontrollers for balancing an inverted pendulum. Comput Neural Syst 9:495–511CrossRefGoogle Scholar
  25. 25.
    Pasemann F (2002) Complex dynamics and the structure of small neural networks. Netw Comput Neural Syst 13(2):195–216Google Scholar
  26. 26.
    Pasemann F, Hild M, Zahedi K (2003) So(2) – networks as neural oscillators. In: Mira J, Alvarez JR (eds) Computational Methods in Neural Modeling. Proceedings IWANN. Springer, Berlin, pp 144–151CrossRefGoogle Scholar
  27. 27.
    Rempis C (2007) Simba, a framework for the artificial evolution of neural networksGoogle Scholar
  28. 28.
    Rohde M, Di Paolo E (2006) An Evolutionary Robotics simulation of human minimal social interaction. Long abstract SAB 6Google Scholar
  29. 29.
    Sims K (1994) Evolving virtual creatures, SIGGRAPH 94. In: Comput Graph Proc, Annual Conference Series, pp 15–22Google Scholar
  30. 30.
    von Twickel A, Pasemann F (2007) Reflex-oscillations in evolved single leg neurocontrollers for walking machines. Nat Comput 6(3):311–337CrossRefGoogle Scholar
  31. 31.
    Wischmann S, Hulse M, Knabe JF, Pasemann F (2006) Synchronization of internal neural rhythms in multi-robotic systems. Adapt Behav 14(2):117–127. DOI 10.1177/105971230601400203. URL http://adb.sagepub.com/cgi/content/abstract/14/2/117, http://adb.sagepub.com/cgi/reprint/14/2/117.pdf Google Scholar
  32. 32.
    Zahedi K, Twickel A, Pasemann F (2008) YARS: A Physical 3D Simulator for Evolving Controllers for Real Robots. In: Proceedings of the 1st international conference on simulation, modeling, and programming for autonomous Robots, Springer, Berlin, pp 75–86Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Okinawa Institute of Science and TechnologyOkinawaJapan

Personalised recommendations