Skip to main content

State-of-the-Art of Ultrasound Imaging in Medicine and Biology

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 22))

Abstract

The history of medical ultrasonic imaging can be traced back over half a century. Amongst the pioneers, Howry and Bliss (1952) in Denver and Wild and Reid (1952) in Minneapolis developed two-dimensional scanners which produced remarkable pictures despite the limited state of knowledge and the primitive nature of the instrumentation that existed at the time. From these beginnings, ultrasonic imaging has evolved so that it is no longer a laboratory curiosity but is in the first rank of radiological science. It has been estimated that about 15 per cent of all radiological work is carried out using ultrasound and that the proportion is increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bom, N., 1972, “New Concepts in Echocardiography”. Stenfert Kroese, Leiden.

    Google Scholar 

  • Bonnefous, O., and Pesque, P., 1986, Time domain formulation of pulse-Doppler ultrasound and velocity estimation by cross correlation. Ultrason. Imag. 8: 75.

    Google Scholar 

  • Braatvedt, G.D., Halliwell, M., Wells. P.N.T.. Read. A. and Corrall. R.J.M, 1991, Postprandial mesenteric blood flow, Gut 32: 1428.

    Google Scholar 

  • Burns, P.N., Halliwell, M., Wells. P.N.T. and Webb. A.J.. 1982. Ultrasonic Doppler studies of the breast, Ultrasound Med Biol. 8: 127.

    Google Scholar 

  • Burns, P.N., 1995. Interpreting and analyzing the Doppler examination, in “,Clinical Applications of Doppler Ultrasound”. 2nd. edn.. K.J.W Taylor. P.N. Burns, and P.N.T. Wells, eds., Raven Press, New York.

    Google Scholar 

  • Curry, G.R., and White, D.N., 1978. Color coded ultrasonic differential velocity arterial scanner (Echoflow), Ultrasound Med. Biol. 4:27.

    Google Scholar 

  • Fried, A.M., and Cosgrove, D.O. 1993, Uterus and ovaries, in “Textbook of Abdominal Ultrasound”, B.B. Goldberg, ed.; Williams & Wilkins. Baltimore.

    Google Scholar 

  • Goldberg, B.B., Liu, J.-B., and Forsberg. F. 1994. Ultrasound contrast agents: a review. Ultrasound Med. Biol. 20: 319.

    Google Scholar 

  • Griffith, J.M., and Henry, W.L., 1974. A sector scanner for real time two-dimensional echocardiography, Circulation 49: 1147.

    Google Scholar 

  • Gururaja, T.R., Schulze, W.A. Cross. L.E. and Newnham. RE. 1985, Piezoelectric composite materials for transducer applications. I.E.E.E. Trans. Sonics Ultrason. 32: 499.

    Google Scholar 

  • Gussenhoven, W.J., Bom, N. and Roelandt. J. eds. 1991. “Intravascular Ultrasound 1991”, Kluwer, Dordrecht.

    Google Scholar 

  • Halliwell, M, Key, H., Jenkins, D. Jackson. P.C. and Wells, P.N.T., 1989, New scans from old: digital reformatting of ultrasonic images. Br. J. Radiol. 62: 824.

    Google Scholar 

  • Harris, R.A., and Wells, P.N.T.. 1993. Ultimate limits in ultrasound image resolution, in “Advances in Ultrasound Techniques and Instrumentation”. P.N.T. Wells, ed. Churchill Livingstone. New York.

    Google Scholar 

  • Howry, D.H., and Bliss, W.R. 1952. Ultrasonic visualization of soft tissue structures of the body, J. Lab. Clin. Med. 40: 579.

    Google Scholar 

  • Jaife, B., Roth, R.S., and Marzullo. S. 1955. Properties of piezoelectric ceramics in solid-solution series lead titanate — lead zirconate — lead oxide: tin oxide and lead titanate — lead hafnate, J. Res. Nat. Bur. Stand. 55: 239.

    Google Scholar 

  • Kasai, C, Namekawa, K., Koyano. A and Omoto. R. 1985. Real-time two-dimensional blood flow imaging using an autocorrelation technique. I.E.E.E. Trans. Sonics Ultrason. 32: 458.

    Google Scholar 

  • Masotti, L., and Pini, R., 1993, Three-dimensional imaging, in “Advances in Ultrasound Techniques and Instrumentation”. P.N.T. Wells, ed.. Churchill Livingstone, New York.

    Google Scholar 

  • Nissen, S.E., and Gurley. J.C.. 1991. Application of intravascular ultrasound for detection and quantification of coronary atherosclerosis in “Intravascular Ultrasound 1991”. W.J. Gussenhoven, N. Bom, and J Roelandt. eds.. Kluwer. Dordrecht.

    Google Scholar 

  • Reid, J.M., and Spencer. M.. 1972. Ultrasonic Doppler technique for imaging blood vessels, Science 176: 1235.

    Google Scholar 

  • Salustri, A., and Roelandt, J.R.T.C. 1995. Ultrasonic three-dimensional reconstruction of the heart, Ultrasound Med. Biol. 21: 281.

    Google Scholar 

  • Satomura, S., 1957, Ultrasonic Doppler method for the inspection of cardiac functions, J. Acoust, Soc. Am. 29: 1181.

    Google Scholar 

  • Schrope, B.A., and Newhouse, V.L., 1993. Second harmonic ultrasonic blood perfusion measurement, Ultrasound Med. Biol. 19: 567.

    Google Scholar 

  • Wells, P.N.T., 1966, Developments in medical ultrasonics, Wld. Med. Electron. 4: 272.

    Google Scholar 

  • Wells, P.N.T., 1975, Absorption and dispersion of ultrasound in biological tissues, Ultrasound Med. Biol. 1:369.

    Google Scholar 

  • Wells, P.N.T., 1977, “Biomedical Ultrasonics”. Academic Press, London.

    Google Scholar 

  • Wells, P.N.T., 1986, The prudent use of diagnostic ultrasound, Br. J. Radiol. 59: 1143.

    Google Scholar 

  • Wells, P.N.T., ed., 1987, “The Safety of Diagnostic Ultrasound”, Br. J. Radiol. suppl. 20.

    Google Scholar 

  • Wells, P.N.T., 1989, Doppler ultrasound in medical diagnosis, Br. J. Radiol. 62: 399.

    Google Scholar 

  • Wells, P.N.T., 1994, Ultrasonic colour flow imaging, Phys. Med. Biol. 39: 2113.

    Google Scholar 

  • Wells, P.N.T., 1995, Today’s state-of-the-art: does colour velocity imaging overtake colour Doppler?, J. Vasc.Invest. 1: 38.

    Google Scholar 

  • Wild, J.J., and Reid, J.M., 1952, Further pilot echographic studies of the histologie structure of the living intact human breast, Am. J. Path. 28: 839.

    Google Scholar 

  • Woodcock, J.P., 1970, The significance of changes in velocity/time waveform in occlusive arterial disease in the leg, in “Ultrasonics in Biology and Medicine”. L. Filipczynski, ed., Polish Scientific, Warsaw.

    Google Scholar 

  • Zwiebel, W.J., 1995, Cerebrovascular Doppler applications, in “Clinical Applications of Doppler Ultrasound”. 2nd. edn. K.J.W. Taylor. P.N. Burns, and P.N.T. Wells, eds.. Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wells, P.N.T. (1996). State-of-the-Art of Ultrasound Imaging in Medicine and Biology. In: Tortoli, P., Masotti, L. (eds) Acoustical Imaging. Acoustical Imaging, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8772-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8772-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4687-6

  • Online ISBN: 978-1-4419-8772-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics