Advertisement

Nanoscale Imaging of Mechanical Properties by Ultrasonic Force Microscopy (UFM)

  • Oleg Kolosov
  • Andrew Briggs
  • Kazushi Yamanaka
  • Walter Arnold
Part of the Acoustical Imaging book series (ACIM, volume 22)

Abstract

Acoustic microscopy1 enables the elastic properties of materials to be imaged and measured with submicron spatial resolution limited only by the wavelength of the ultrasound. Nevertheless, there are practical reasons why this resolution cannot be increased indefinitely. Therefore, in order to improve the spatial resolution below the wavelengths presently available, a near field technique is needed. Atomic force microscopy (AFM) offers the resolution required2, but by itself AFM does not measure material properties; in its usual mode it gives an image of the topography of a surface at constant normal force.

Keywords

Atomic Force Microscopy Subsurface Damage Acoustic Microscopy Cantilever Deflection Atomic Force Microscopy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemons and C. F. Quate, Appl. Phys. Lett., 24 163–165 (1974); Briggs, Acoustic Microscopy, Clarendon Press, Oxford (1992).ADSCrossRefGoogle Scholar
  2. 2.
    Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56. 930 (1986); Martin. C. C. Williams, H. K. Wickramasinghe, J. Appl. Phys., 61 4723 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    Maivald et al., Nanotechnology 103 2 (1991); Radmacher, R.W. Tillmann, M. Fritz, H. E. Gaub, Science, 1990 257(1992).Google Scholar
  4. 4.
    M. North, R.A. Petric, D. W. Phillips, Macromolecules 10, (1977). Kolosov, Suzuki M, Yamanaka K., J. Appl. Phys., 6407 74 (1993).Google Scholar
  5. 5.
    Takata, T. Hasegawa, S. Hosaka, S. Hosoku, T. Komoda. Appl. Phys. Lett. 17 55 (1989); Cretin and F. Sthal, Appl, Phys. Lett. 829 62 (1993).Google Scholar
  6. 6.
    Rohrbeck and E. Chilla. Phys. Stat. Sol.(a), 69 131 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    Kolosov and K. Yamanaka, Japanese J Appl. Phys. B (Letter) L1095 32 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    Kolosov, H. Ogiso, K. Yamanaka. Proceedings of the 3rd Japan SAMPE Symposium. Tokyo, JAPAN, 1993.Google Scholar
  9. 9.
    Yamanaka, H. Ogiso, O. Kolosov, Appl. Phys. Lett., 178 64 (1994); S. Myers, MRS Bull. 8 XIX (1994).ADSCrossRefGoogle Scholar
  10. 10.
    Rabe and W. Arnold, Appl Phys. Lett., 64:1493 (1994); Rabe, W. Arnold, Annalen Der Physik, 3:589, (1994).ADSCrossRefGoogle Scholar
  11. 11.
    Burnham, A.J. Kulik, G. Gremaud and G.A.D. Briggs, Phys. Rev. Lett., 74:5092 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    O. Kolosov, H. Ogiso, H. Tokumoto, K. Yamanaka, in Nanostructures & Quantum Effects, ed: Sakaki H. & Noge H., Springer Series in Material Sciences, Springer-Verlag, vol. 31, pp.345–348, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Oleg Kolosov
    • 1
  • Andrew Briggs
    • 1
  • Kazushi Yamanaka
    • 2
  • Walter Arnold
    • 3
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Mechanical Engineering LaboratoryTsukuba. IbarakiJapan
  3. 3.Fraunhofer Institute for Non-destructive testingSaarbruckenGermany

Personalised recommendations