Skip to main content

Abstract

Recent evidence obtained with transgenic knockout mice suggests that the enzyme poly(ADP-ribose)polymerase (PARP) does not play a direct role in DNA break processing [1, 2]. Nevertheless, inactivation of the catalytic or the DNA nick-binding functions of PARP affects cellular responses to genotoxins at the level of cell survival, sister chromatid exchanges and apoptosis [2, 3]. In the present report, we conceptualize the idea that PARP is part of a DNA break signal mechanism [4, 5]. In vitro screening studies revealed the existence of a protein family containing a polymer-binding motif of about 22 amino acids. This motif is present in p53 protein as well as in MARCKS, a protein involved in the regulation of the actin cytoskeleton. Biochemical analyses showed that these sequences are directly targeted by PARP-associated polymers in vitro, and this alters several molecular functions of p53- and MARCKS protein. PARP-deficient knockout mice from transgenic mice were found to exhibit several phenotypic features compatible with altered DNA damage signaling, such as downregulation and lack of responsiveness of p53 protein to genotoxins, and morphological changes compatible with MARCKS-related cytoskeletal dysfunction. The knockout phenotype could be rescued by stable expression of the PARP gene. — We propose that PARP-associated polymers may recruit signal proteins to sites of DNA breakage and reprogram their functions. (Mol Cell Biochem 193: 5–11,1999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF: Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520, 1997

    Article  Google Scholar 

  2. Ménissier-de Murcia J, Niedergang C, Trueco C, Ricoul M, Dutrillaux B, Marks M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Nati Acad Sci USA 94: 7303–7307, 1997

    Article  Google Scholar 

  3. Schreiber V, Hunting D, Trueco C, Gowans B, Grunwald D, de Murcia G, Ménissier-de Murcia J: Dominant-negative mutant of human poly(ADP-ribose)polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Nati Acad Sei USA 92: 4753–757, 1995

    Article  CAS  Google Scholar 

  4. Lindahl T, Satoh MS, Poirier GG, Klungland A: Posttranslational modification of poly(ADP-ribose)polymerase induced by DNA strand breaks. Trends Biochem Sci 20: 405–411, 1995

    Article  PubMed  CAS  Google Scholar 

  5. Althaus FR: Role of poly(ADP-ribose)polymerase in base excision repair. In: J.D. Hickson (ed) Base Excision Repair of DNA Damage. Springer/Landes Bioscience, Austin TX, 1997, pp. 169–181

    Google Scholar 

  6. Althaus FR: Poly ADP-ribosylation: A histone shuttle mechanism in DNA excision repair. J Cell Sci 102: 663–670, 1992

    PubMed  CAS  Google Scholar 

  7. Mathis G, Althaus FR: Uncoupling of DNA excision repair and nucleosomal unfolding in poly (ADP-ribose)-depleted mammalian cells. Carcinogenesis 13: 135–138, 1990

    Google Scholar 

  8. Reed M, Woelker B, Wang P, Anderson MA, Tegtmeyer P: The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Nati Acad Sci USA 92: 9455–9459, 1995

    Article  CAS  Google Scholar 

  9. Jackson SP, Jeggo PA: DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20: 412–415, 1995

    Article  PubMed  CAS  Google Scholar 

  10. De Murcia G, Ménissier-de Murcia J: Poly(ADP-ribose)polymerase: A molecular nick sensor. Trends Biochem Sci 19: 172–176, 1994

    Article  PubMed  Google Scholar 

  11. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091, 1991

    Article  PubMed  CAS  Google Scholar 

  12. Niewolik D, Vojtesek B, Kovarik J: p53-derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene 10: 881–890, 1995

    PubMed  CAS  Google Scholar 

  13. Malanga M, Bachmann S, Panzeter PL, Zweifel B, Althaus FR: Poly(ADP-ribose) quantification at the fentomol level in mammalian cells. Anal Biochem 228: 245–251, 1995

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser P, Auer B, Schweiger M: Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD-ADP-ribosyltransferase requires the DNA binding domain (‘zinc finger’). Mol Gen Genet 232: 231–239, 1992

    PubMed  CAS  Google Scholar 

  15. Panzeter PL, Zweifel B, Malanga M, Waser SH, Richard MC, Althaus FR: Targeting of histone tails by poly(ADP-ribose). J Biol Chem 268: 17662–17664, 1993

    PubMed  CAS  Google Scholar 

  16. Jayaraman L, Prives C: Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Panzeter P, Realini C, Althaus FR: Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31: 1379–1385, 1992

    Article  PubMed  CAS  Google Scholar 

  18. Malanga M, Pleschke JM, Kleczowska HE, Althaus FR: Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 273: 11839–11843, 1998

    Article  PubMed  CAS  Google Scholar 

  19. Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 23: 362–369, 1995

    Article  PubMed  CAS  Google Scholar 

  20. Aderem AA: The MARCKS brothers: A family of protein kinase C substrates. Cell 71: 713–716, 1992

    Article  PubMed  CAS  Google Scholar 

  21. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem AA: MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618–622, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Shin I, Kam Y, Ha KS, Kang K, Joe CO: Inhibition of the phosphorylation of a myristoylated alanine-rich C kinase substrate by methyl methane-sulfonate in cultured MH 3T3 cells. Mutat Res 351: 163–171, 1996

    Article  PubMed  Google Scholar 

  23. Li X, Coffino P: Identification of a region of p53 that confers lability. J Biol Chem 271: 4447–4451, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Althaus FR, Richter C: ADP-ribosylation of proteins. Mol Biol Biochem Biophys 37: 1–125, 1987

    PubMed  CAS  Google Scholar 

  25. Kleczkowska HE, Althaus FR: Response of human keratinocytes to extremely low concentrations of N-methyl-N’-nitro-N-nitrosoguanidine. Mutat Res 367: 151–159, 1996

    Article  PubMed  CAS  Google Scholar 

  26. Wesierska-Gadek J, Bugajaska-Schretter A, Cemi C: ADP-ribosylation of p53 tumor suppressor protein: Mutant but not wild-type p53 is modified. J Cell Biochem 62: 90–101, 1996

    Article  PubMed  CAS  Google Scholar 

  27. Mendoza-Alvarez H, Alvarez-Gonzalez R: Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268: 22575–22580, 1993

    PubMed  CAS  Google Scholar 

  28. Panzeter P L, Althaus F R: DNA strand break-mediated partitioning of poly(ADP-ribose)polymerase function. Biochemistry 33: 9600–9605, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Althaus, F.R. et al. (1999). Poly ADP-ribosylation: A DNA break signal mechanism. In: Alvarez-Gonzalez, R. (eds) ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer. Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8740-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8740-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4678-4

  • Online ISBN: 978-1-4419-8740-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics