Advertisement

Poly ADP-ribosylation: A DNA break signal mechanism

  • Felix R. Althaus
  • Hanna E. Kleczkowska
  • Maria Malanga
  • Cedric R. Müntener
  • Jutta M. Pleschke
  • Maria Ebner
  • Bernhard Auer
Part of the Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease book series (DMCB, volume 30)

Abstract

Recent evidence obtained with transgenic knockout mice suggests that the enzyme poly(ADP-ribose)polymerase (PARP) does not play a direct role in DNA break processing [1, 2]. Nevertheless, inactivation of the catalytic or the DNA nick-binding functions of PARP affects cellular responses to genotoxins at the level of cell survival, sister chromatid exchanges and apoptosis [2, 3]. In the present report, we conceptualize the idea that PARP is part of a DNA break signal mechanism [4, 5]. In vitro screening studies revealed the existence of a protein family containing a polymer-binding motif of about 22 amino acids. This motif is present in p53 protein as well as in MARCKS, a protein involved in the regulation of the actin cytoskeleton. Biochemical analyses showed that these sequences are directly targeted by PARP-associated polymers in vitro, and this alters several molecular functions of p53- and MARCKS protein. PARP-deficient knockout mice from transgenic mice were found to exhibit several phenotypic features compatible with altered DNA damage signaling, such as downregulation and lack of responsiveness of p53 protein to genotoxins, and morphological changes compatible with MARCKS-related cytoskeletal dysfunction. The knockout phenotype could be rescued by stable expression of the PARP gene. — We propose that PARP-associated polymers may recruit signal proteins to sites of DNA breakage and reprogram their functions. (Mol Cell Biochem 193: 5–11,1999)

Key words

poly(ADP-ribose)polymerase PARP-knockout mice poly(ADP-ribose)-binding proteins p53 protein MARCKS protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF: Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520, 1997CrossRefGoogle Scholar
  2. 2.
    Ménissier-de Murcia J, Niedergang C, Trueco C, Ricoul M, Dutrillaux B, Marks M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Nati Acad Sci USA 94: 7303–7307, 1997CrossRefGoogle Scholar
  3. 3.
    Schreiber V, Hunting D, Trueco C, Gowans B, Grunwald D, de Murcia G, Ménissier-de Murcia J: Dominant-negative mutant of human poly(ADP-ribose)polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Nati Acad Sei USA 92: 4753–757, 1995CrossRefGoogle Scholar
  4. 4.
    Lindahl T, Satoh MS, Poirier GG, Klungland A: Posttranslational modification of poly(ADP-ribose)polymerase induced by DNA strand breaks. Trends Biochem Sci 20: 405–411, 1995PubMedCrossRefGoogle Scholar
  5. 5.
    Althaus FR: Role of poly(ADP-ribose)polymerase in base excision repair. In: J.D. Hickson (ed) Base Excision Repair of DNA Damage. Springer/Landes Bioscience, Austin TX, 1997, pp. 169–181Google Scholar
  6. 6.
    Althaus FR: Poly ADP-ribosylation: A histone shuttle mechanism in DNA excision repair. J Cell Sci 102: 663–670, 1992PubMedGoogle Scholar
  7. 7.
    Mathis G, Althaus FR: Uncoupling of DNA excision repair and nucleosomal unfolding in poly (ADP-ribose)-depleted mammalian cells. Carcinogenesis 13: 135–138, 1990Google Scholar
  8. 8.
    Reed M, Woelker B, Wang P, Anderson MA, Tegtmeyer P: The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Nati Acad Sci USA 92: 9455–9459, 1995CrossRefGoogle Scholar
  9. 9.
    Jackson SP, Jeggo PA: DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20: 412–415, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    De Murcia G, Ménissier-de Murcia J: Poly(ADP-ribose)polymerase: A molecular nick sensor. Trends Biochem Sci 19: 172–176, 1994PubMedCrossRefGoogle Scholar
  11. 11.
    Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091, 1991PubMedCrossRefGoogle Scholar
  12. 12.
    Niewolik D, Vojtesek B, Kovarik J: p53-derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene 10: 881–890, 1995PubMedGoogle Scholar
  13. 13.
    Malanga M, Bachmann S, Panzeter PL, Zweifel B, Althaus FR: Poly(ADP-ribose) quantification at the fentomol level in mammalian cells. Anal Biochem 228: 245–251, 1995PubMedCrossRefGoogle Scholar
  14. 14.
    Kaiser P, Auer B, Schweiger M: Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD-ADP-ribosyltransferase requires the DNA binding domain (‘zinc finger’). Mol Gen Genet 232: 231–239, 1992PubMedGoogle Scholar
  15. 15.
    Panzeter PL, Zweifel B, Malanga M, Waser SH, Richard MC, Althaus FR: Targeting of histone tails by poly(ADP-ribose). J Biol Chem 268: 17662–17664, 1993PubMedGoogle Scholar
  16. 16.
    Jayaraman L, Prives C: Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029, 1995PubMedCrossRefGoogle Scholar
  17. 17.
    Panzeter P, Realini C, Althaus FR: Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31: 1379–1385, 1992PubMedCrossRefGoogle Scholar
  18. 18.
    Malanga M, Pleschke JM, Kleczowska HE, Althaus FR: Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 273: 11839–11843, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 23: 362–369, 1995PubMedCrossRefGoogle Scholar
  20. 20.
    Aderem AA: The MARCKS brothers: A family of protein kinase C substrates. Cell 71: 713–716, 1992PubMedCrossRefGoogle Scholar
  21. 21.
    Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem AA: MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618–622, 1992PubMedCrossRefGoogle Scholar
  22. 22.
    Shin I, Kam Y, Ha KS, Kang K, Joe CO: Inhibition of the phosphorylation of a myristoylated alanine-rich C kinase substrate by methyl methane-sulfonate in cultured MH 3T3 cells. Mutat Res 351: 163–171, 1996PubMedCrossRefGoogle Scholar
  23. 23.
    Li X, Coffino P: Identification of a region of p53 that confers lability. J Biol Chem 271: 4447–4451, 1996PubMedCrossRefGoogle Scholar
  24. 24.
    Althaus FR, Richter C: ADP-ribosylation of proteins. Mol Biol Biochem Biophys 37: 1–125, 1987PubMedGoogle Scholar
  25. 25.
    Kleczkowska HE, Althaus FR: Response of human keratinocytes to extremely low concentrations of N-methyl-N’-nitro-N-nitrosoguanidine. Mutat Res 367: 151–159, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    Wesierska-Gadek J, Bugajaska-Schretter A, Cemi C: ADP-ribosylation of p53 tumor suppressor protein: Mutant but not wild-type p53 is modified. J Cell Biochem 62: 90–101, 1996PubMedCrossRefGoogle Scholar
  27. 27.
    Mendoza-Alvarez H, Alvarez-Gonzalez R: Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268: 22575–22580, 1993PubMedGoogle Scholar
  28. 28.
    Panzeter P L, Althaus F R: DNA strand break-mediated partitioning of poly(ADP-ribose)polymerase function. Biochemistry 33: 9600–9605, 1994PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Felix R. Althaus
    • 1
    • 3
  • Hanna E. Kleczkowska
    • 1
  • Maria Malanga
    • 1
  • Cedric R. Müntener
    • 1
  • Jutta M. Pleschke
    • 1
  • Maria Ebner
    • 2
  • Bernhard Auer
    • 2
  1. 1.University of Zürich-Tierspital, Institute of Pharmacology and ToxicologyZürichSwitzerland
  2. 2.University of Innsbruck, Institute of BiochemistryInnsbruckAustria
  3. 3.University of Zürich-Tierspital, Institute of Pharmacology and ToxicologyZürichSwitzerland

Personalised recommendations