Ceramic Oxide Fibers From Sol-Gels and Slurries

  • R. Naslain
Part of the Materials Technology Series book series (MTEC, volume 6)

Abstract

Ceramic aluminate and zirconate fibers have higher melting temperatures, moduli, service temperatures, corrosion resistance, and lower dielectric constants and strength than amorphous silica and silicate glass fibers as discussed in Chapters 5, 6 and 7.

Keywords

Hydrolysis Crystallization Shrinkage Dehydration Calcination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. M. Rabinovitch, Sol-gel processing, general principles, in Sol-Gel Optics. Processing and Applications, L.C. Klein, ed., chap. 1, 1–37, Kluwer Acad. Publ., Boston, Dordrecht, and London (1994).Google Scholar
  2. [2]
    D.W. Johnson Jr., Sol-gel processing of ceramics and glass, Ceram. Bulletin, 64[2], 1597–1602 (1985).Google Scholar
  3. [3]
    R. Roy, Ceramics by the solution-sol-gel route, Science, 238, 1664–1669 (1987).CrossRefGoogle Scholar
  4. [4]
    Colomban P., Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites, Ceramics Intern., 15, 23–50 (1989).CrossRefGoogle Scholar
  5. [5]
    G. Wilson and A. Patel, Recent advances in sol-gel processing for improved materials synthesis, Mater. Sci. and Technology, 9, 937–944 (1993).Google Scholar
  6. [6]
    J. Livage, Les matériaux céramiques bénéficient des procédés sol-gel, Mater, et Techniques, 6-7, 23–27 (1994).Google Scholar
  7. [7]
    M. Pozo de Fernandez, Kang and P. L. Mangonon, Process ceramic fibers by sol-gel, Chemical Engineering Progress, 49–53, Sept. 1993.Google Scholar
  8. [8]
    G. D. Kim, D. A. Lee, H. I. Lee and S. J. Yoon, A study on the development of mullite fibers using the sol-gel process, Mater. Sci. and Engineering, A167, 171–178 (1993).CrossRefGoogle Scholar
  9. [9]
    J. Phallipou, Processing of monolithic ceramics via sol-gel, in Chemical Processing of Ceramics, 265–285, B. Lee and E. Pope, eds., M. Dekker Publisher, New York (1994)Google Scholar
  10. [10]
    W. H. Gitzen, Alumina as a ceramic material, 742, The Amer. Ceram. Soc, Columbus, OH (1970).Google Scholar
  11. [11]
    J. D. Birchall, The preparation and properties of polycrystalline aluminum oxide fibers, Trans. J. Br. Ceram. Soc, 82, 143–145 (1983).Google Scholar
  12. [12]
    J. D. Birchall, J. A. A. Bradbury and J. Dinwoodie, Alumina fibres; preparation, properties and applications, in Handbook of Composites, Vol. 1 Strong Fibers, W. Watt and B.V. Perov, eds., 115–154, Elsevier, Amsterdam (1985).Google Scholar
  13. [13]
    A. Douy, Stabilisation of transition aluminas by alkaline earth ions, Key Engineering Materials, Vols. 132-136, 101–104, Trans. Tech. Publications, Zürich (1997).Google Scholar
  14. [14]
    J. A. Pask, Critical review of phase equilibria in the l2OSiO2 system, Ceram. Trans., 6, 1–13 (1990).Google Scholar
  15. [15]
    J. A. Pask and A. P. Tomsia, Formation of mullite from sol-gel mixtures and kaolinite, J. Amer. Ceram. Soc., 74[10], 2367–73 (1991).CrossRefGoogle Scholar
  16. [16]
    M. D. Sacks, Hae-Weon Lee and J. A. Pask, A review of powder preparation methods and densification procedures for fabricating high density mullite, Ceram. Trans., 6, 167–207 (1990).Google Scholar
  17. [17]
    D. M Wilson, S. L. Lieder and D. E. Lueneburg, Micro-structure and high temperature properties of Nextel 720 fibers, Ceram. Eng. Sci. Proa, 16, 1005–1014 (1995).Google Scholar
  18. [18]
    G. Das, Stability of polycrystalline Nextel 720 fiber, Ceram. Eng. Sci. Proa, 17[4], 25–34 (1996).Google Scholar
  19. [19]
    J. Romine, New high temperature ceramic fiber, Ceram. Eng. Sci. Proa, 8[7-8], 755–765 (1987).CrossRefGoogle Scholar
  20. [20]
    D. J. Pysher and R. E. Trassier, Creep rupture studies of two alumina based ceramic fibres, J. Mater. Sci., 27, 423–428 (1992).CrossRefGoogle Scholar
  21. [21]
    Claus, Preparation and characterization of spinning dopes for dry-spinning of contin-uous alumina green fibers, Angewandte Makromoleculare Chemie, 217, 139-158 (1994).Google Scholar
  22. [22]
    A. K. Dhingra, Alumina Fiber FP, Phil. Trans. R. Soc. Lond., A294, 411–417 (1980).CrossRefGoogle Scholar
  23. [23]
    L E. Seufert, Alumina fiber, US Pat. 3, 808, 015, Apr. 30, 1974.Google Scholar
  24. [24]
    Hyunkook Shin, Firing process for alumina yam, US Pat. 3, 953, 561, Apr. 27, 1976.Google Scholar
  25. [25]
    K. Koba, T. Utsunomiya, Y. Saitow, K. Iwanaga, M. Matsue and N. Nishitani, Continuous process for producing long γ-alumina fibers, US Pat. 4, 812, 271, Mar. 14, 1989.Google Scholar
  26. [26]
    T. Maki and S. Sakka, Preparation of alumina fibers by sol-gel method, J. Non-crystalline Solids, 100, 303–308 (1988).CrossRefGoogle Scholar
  27. [27]
    Y. H. Chiou, M. T. Tsai and H. Shih, The preparation of alumina fibre by sol-gel processing, J. Mater. Sci., 29, 2378–2388 (1994).CrossRefGoogle Scholar
  28. [28]
    T. Yogo and H. Iwahara, Synthesis of polycrystalline alumina fiber with aluminium chelate precursor, J. Mater. Sci., 26, 5292–5296 (1991).CrossRefGoogle Scholar
  29. [29]
    T. Yogo and H. Iwahara, Synthesis of γ-alumina fibre from modified aluminium alkoxide precursor, J. Mater. Sci., 27, 1499–1504 (1992).CrossRefGoogle Scholar
  30. [30]
    T. Nishio and Y. Fujiki, Phase transformation kinetics of precursor gel to α-alumina, J. Mater. Sci., 29, 3408–3414 (1994).CrossRefGoogle Scholar
  31. [31]
    J. Dinwoodie, Saffil alumina fiber, manufacture, properties and application in high temperature furnaces, Canadian Ceramics Quarterly, 23–29, Feb. 1996.Google Scholar
  32. [32]
    H. G. Sowman, Alumina-boria-silica ceramic fibers from the sol-gel process, in Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes, L Klein, ed., 162–183, Noyes Publications, Park Ridge, NJ (1988).Google Scholar
  33. [33]
    Lesniewski, C. Aubin and A. R. Bunsell, Property-structure-characterization of a continuous fine alumina-silica fibre, Composites Science & Technology, 37, 63–78 (1990).CrossRefGoogle Scholar
  34. [34]
    M. H. Stacey, Developments in continuous alumina-based fibres, Br. Ceram. Trans., 87, 168–172 (1988).Google Scholar
  35. [35]
    Babcock and Wilcox Company, Brit. Pat., 1141 207, Jan. 29, 1969.Google Scholar
  36. [36]
    J. D. Birchall, M J. Morton, J. S. Kenworth and M. D. Taylor, British Pat., 1, 425, 934, Feb. 25, 1976.Google Scholar
  37. [37]
    M. J. Morton, J. D. Birchall and J. E. Cassidy, British Pat., 1 360197, July 17, 1994.Google Scholar
  38. [38]
    J. Huling and G. L. Messing, Surface chemistry effects on homogeneity and crystallization of colloidal mullite sol-gels, Ceram. Trans., 6, 221–229 (1990).Google Scholar
  39. [39]
    S. Komameni and R. Roy, Mullite derived from diphasic nanocomposite gels, Ceram. Trans., 6, 209–219 (1990).Google Scholar
  40. [40]
    Yoldas, Mullite formation from aluminum and silicon alkoxides, Ceram. Trans., 6, 255–261 (1990).Google Scholar
  41. [41]
    I. Jaymes, A. Douy, D. Massiot and J. P. Coutures, Characterization of mono-and diphasic-mullite precursor powders prepared by aqueous routes. 27Al and 29Si MAS-NMR spectroscopy investigations, J. Mater. Sci., 31, 4581–4589(1996).CrossRefGoogle Scholar
  42. [42]
    D. X. Li and W. J. Thompson, Tetragonal to orthorhombic transformation during mullite formation, J. Mater. Res., 6[4], 819–824 (1991).CrossRefGoogle Scholar
  43. [43]
    T. L. Tompkins, Ceramic oxide fibers, building blocks for new applications, Ceramic Industry, 144[4], 45–50 (1995).Google Scholar
  44. [44]
    H. G. Sowman and D. D. Johnson, Ceramic oxide fibers, Ceram. Eng. Sci. Proc., 6[9-10], 1221–1230 (1995).Google Scholar
  45. [45]
    D. D. Johnson, Properties and applications for 3M’s Nextel 440 ceramic fiber, in Looking Ahead for Materials and Processes, J. de Bossu, G. Briens and P. Lissac, eds., 443–454, Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  46. [46]
    J. M. Boulton, K. Jones and H. G. Emblem, Gels, filaments and fibres from alkoxysilanes and aluminium chlorohydrate-polyol complexes, J. Mater. Sci., 24, 979–990 (1989).CrossRefGoogle Scholar
  47. [47]
    R. Venkatachari, L. T. Moeti, M D. Sacks and J. H. Simmons, Preparation of mullite-based fibers by sol-gel processing, Ceram. Eng. Sci. Proc, 11 [9-10] 1512–1525 (1990).CrossRefGoogle Scholar
  48. [48]
    D. S. Tucker, J. S. Sparks and D. Esker, Production of continuous mullite fiber via sol-gel processing, Ceram. Bull., 69[12], 1971–1974 (1990).Google Scholar
  49. [49]
    G. D. Kim, D. A. Lee, H. I. Lee and S. J. Yoon, A study on the development of mulling fibers using sol-gel process, Mater. Sci. Eng., A 167, 171–178 (1993).Google Scholar
  50. [50]
    S. Al-Assafi, T. Cruse, J. H. Simmons, A. B. Brennan and M. D. Sacks, Sol-gel processing of continuous mullite fibers, Ceram. Eng. Sci. Proc, 14[7-8], 1060–1067 (1993).Google Scholar
  51. [51]
    S. Al-Assafi, T. Cruse, J. H. Simmons, A. Brennan and M. D. Sacks, Processing of fine-diameter continuous mullite fibers, Ceram. Trans., 46, 65–72 (1994).Google Scholar
  52. [52]
    L. Chen, Wang, S. Liu and Y. Yan, Preparation of mullite fiber, J. Amer. Ceram. Soc, 79[6], 1494–1498 (1996).Google Scholar
  53. [53]
    Y. Abe, S. Horikiri, K. Fujimura and E. Ichiki, High-performance alumina fiber and alumina/aluminum composites, in Progress in Science and Engineering of Composites (T. Hayashi, K. Kawata and S. Umekawa, eds.), ICCM-IV, 1427–1434, Tokyo (1982).Google Scholar
  54. [54]
    D. D. Johnson, A. R. Holtz and M. F. Grether, Properties of Nextel 480 ceramic fibers, Ceram. Eng. Sci. Proc, 8[7-8], 744–754 (1987).CrossRefGoogle Scholar
  55. [55]
    M. Schmücker, F. Flucht and H. Schneider, High temperature behavior of polycrystalline aluminosilicate fibres with mullite bulk composition. I. Micro-structure and strength properties, J. Europ. Ceram. Soc, 16, 281–285 (1996).CrossRefGoogle Scholar
  56. [56]
    A. Borer and G. P. Krogseng, Method of firing dry spun refractory oxide fibers, US Pat. 3, 760, 049, Sept. 18, 1973.Google Scholar
  57. [57]
    H. G. Sowman, Aluminum borate and aluminum borosilicate articles, US Pat. 3, 795, 524, Mar. 5, 1974.Google Scholar
  58. [58]
    K. A. Karst and H. G. Sowman, Non-frangible alumina-silica fibers, US Pat. 4, 047, 965, Sept. 13, 1977.Google Scholar
  59. [59]
    E. A. Richards, J. Goodbrake and H. G. Sowman, Reactions and microstructure development in mullite fibers, J. Amer. Ceram. Soc, 74[10], 2404–2409 (1991).CrossRefGoogle Scholar
  60. [60]
    Kadokura Hidekimi, Harakawa Masashi, Seagusa Kumo and Yamagiwa Masao, Processing for producing inorganic fiber, Europ. Pat, 0 083 839, Nov. 30, 1982.Google Scholar
  61. [61]
    J. K. Weddel, Continuous ceramic fibers, J. Text. Inst, 81[4], 333–359 (1990).CrossRefGoogle Scholar
  62. [62]
    M. Wolfe, Zirconia-modified alumina fiber, US Pat. 4 753 904, June 28, 1988.Google Scholar
  63. [63]
    S. Wang and H. J. Dudek, Structure of phases in the in2 in3 fiber studied by convergent beam electron diffraction, Metal. Mater. Trans., 27A, 3318-3329 (1996).Google Scholar
  64. [64]
    A. R. Bunsell and M. H. Berger, Ceramic fibre development and characterization, in Key Engineering Materials, Vols. 127–131 15–26, Trans. Tech. Publ., Switzerland (1997).Google Scholar
  65. [65]
    A. R. Bunsell, Development of fine ceramic fibres for high temperature composites, Materials Forum, 11, 78–84 (1988).Google Scholar
  66. [66]
    B. O. Hildmann, H. Schneider and M. Schmücker, High temperature behaviour of polycrystalline aluminosilicate fibres with mullite bulk composition. II. Kinetics of mullite formation, J. Europ. Ceram. Soc, 16, 287–292 (1996).CrossRefGoogle Scholar
  67. [67]
    V. Lavaste, M. H. Berger, A. R. Bunsell and J. Besson, Microstructure and mechanical characteristics of alpha-alumina-based fibres, J. Mater. Sci., 30, 4215–4225 (1995).CrossRefGoogle Scholar
  68. [68]
    D. M. Wilson, Statistical tensile strength of Nextel 610 and Nextel 720 fibres, J. Mater. Sci., 32, 2535–2542 (1997).CrossRefGoogle Scholar
  69. [69]
    S. Nourbakhsh, F. L. Liang and H. Margolin, Characterization of a zirconia toughened alumina fibre, PRD-166, J. Mater. Sci. Letters, 8, 1252–1254 (1989).CrossRefGoogle Scholar
  70. [70]
    D. M. Wilson, D. Lueneburg and S. L. Lieder, High temperature properties of Nextel 610 and alumina-based nanocomposite fibers, Ceram. Eng. Sci. Proc, 14[7-8], 609 (1993).CrossRefGoogle Scholar
  71. [71]
    J. M. Heintz, J. Bihr and J. F. Silvain, Grain growth in alumina polycrystalline fibres during NiAI/A2O3 composite processing, in Key Engineering Materials, Vols. 127-131, 211–218, Trans. Tech. Publications, Switzerland (1997).Google Scholar
  72. [72]
    A. S. Kim, S. Bengtsson and R. Warren, Fracture strength testing of 8-alumina fibres with variable diameters and lengths, Composites Science and Technolgy, 47, 331–337 (1993).CrossRefGoogle Scholar
  73. [73]
    J. Göring and H. Schneider, Creep and subcritical crack growth of Nextel 720 alumino-silicate fibers as received and after heat treatment at 1300°C, Ceram. Eng, Sci. Proc, 18[3], 95–102 (1997).CrossRefGoogle Scholar
  74. [74]
    Jakus and V. Tulluri, Mechanical behavior of a Sumitomo alumina fiber at room and high temperature, Ceram. Eng. Sci. Proc, 10[9–10], 1338–1349 (1989).CrossRefGoogle Scholar
  75. [75]
    V. Lavaste, J. Besson and A. R. Bunsell, Statistical analysis of strength distribution of alumina based single fibers accounting for diameter variations, J. Mater. Sci., 30, 2042–2048 (1995).CrossRefGoogle Scholar
  76. [76]
    D. J. Pyscher, Goretta, R. S. Hodder and R. E. Trassler, Strengths of ceramic fibers at elevated temperatures, J. Amer. Ceram. Soc, 72[2], 284–288 (1989).CrossRefGoogle Scholar
  77. [77]
    G. Chollon, R. Pailler, R. Naslain and P. Olry, Structure, composition and mechanical behavior at high temperature of the oxygen-free Hi-Nicalon fiber, Ceram. Trans., 58, 299–304 (1995).Google Scholar
  78. [78]
    D. J. Pysher and R. E. Tressler, Tensile creep rupture behavior of alumina based poly-crystalline oxide fibers, Ceram. Eng. Sci. Proc, 13[7-8], 218–226 (1992).Google Scholar
  79. [79]
    R. E. Tressler and J. A. Di Carlo, High temperature mechanical properties of advanced ceramic fibers, in High Temperature Ceramic Matrix Composites, R. Naslain, J. Lamon and D. Doumeingts, eds., 33–49, Woodhead Publishing Ltd., Cambridge, UK (1993).Google Scholar
  80. [80]
    R. E. Tressler and J. A. Di Carlo, Creep and rupture of advanced ceramic reinforcements, Ceram. Trans., 57, 141–155 (1995).Google Scholar
  81. [81]
    H. G. Sowman, A new era in ceramic fibers via sol-gel technology, Ceram. Bull., 67[12], 1911–1916 (1988).Google Scholar
  82. [82]
    R. Stevens, Zirconia and zirconia ceramics, 2nd edition, publication No. 113, Magnesium Elektron Ltd., Twickenham, UK (1986).Google Scholar
  83. [83]
    P. A. Vityaz, I. L. Fyodorova, I. N. Yermolenko and T. M. Ulyanova, Synthesis of alumina and zirconia fibers, Ceram. International, 9[2], 4648 (1983).Google Scholar
  84. [84]
    H. Hamling, A. W. Naumann and W. H. Dresner, Ceramic fibers and textiles from organic precursors, Appl. Polymer Symp., 9, 387–394 (1969).Google Scholar
  85. [85]
    D. B. Marshall, F. F. Lange and P. D. Morgan, High-strength zirconia fibers, J. Amer. Ceram. Soc, 70[8], C-187–188 (1987).Google Scholar
  86. [86]
    M. E. Khavari, F. F. Lange, P. Smith and D. B. Marshall, Continuous spinning of zirconia fibers, relations between processing and strength, in Better Ceramics through Chemistry III, C.J. Blinker, D.E. Clark, D.R. Ulrich, eds., Mater. Res. Soc. Symp. Proa, 21, 617 (1988).Google Scholar
  87. [87]
    B. Clauss, A. Grüb and W. Oppermann, Continuous yttria-stabilized zirconia fibers, Adv. Mater., 8[2], 142–146 (1996).CrossRefGoogle Scholar
  88. [88]
    S. M. Sim and D. E. Clark, Preparation of zirconia fibers by sol-gel method, Ceram. Eng. Sci. Proa, 10[9-10], 1271–1282 (1989).CrossRefGoogle Scholar
  89. [89]
    S. M. Sim, A. Morrone and D. E. Clark, Processing and microstructure of Y-TZPl23 fibers, Ceram. Eng. Sci. Proc, 11[9-10], 1712–1728 (1990).CrossRefGoogle Scholar
  90. [90]
    M. Naskar, and D. Ganguli, Rare-earth doped zirconia fibres by sol-gel processing, J. Mater. Sci., 31, 6263–6266 (1996).CrossRefGoogle Scholar
  91. [91]
    G. Emig, E. Fitzer and R. Zimmermann-Chopin, Sol-gel process for spinning of continuous (Zr2 fibers, Mater. Sci. Engineering, A 189, 311–317 (1994).CrossRefGoogle Scholar
  92. [92]
    G. De, A. Chatterjee and D. Ganguli, Zirconia fibres from the zirconium n-propoxide-acetylacetone-water-isopropanol system, J. Mater. Sci. Letters, 9, 845–846 (1990).CrossRefGoogle Scholar
  93. [93]
    G. Emig, R. Wirth and R. Zimmermann-Chopin, Sol-gel based precursors for manufacturing refractory oxides, J. Mater. Sci., 29, 4559–4566 (1994).CrossRefGoogle Scholar
  94. [94]
    R. Di Maggio, F. Farina, T. Mangialardi and P. Scardi, Preparation of CeO2-stabilized ZrO2 fibers by a chemically modified alkoxide method, in Advanced Structural Fiber Composites (P. Vincenzini, ed.), 3744, Techna Sri, Italy (1995).Google Scholar
  95. [95]
    K. Kamiya, K. Takahashi, K. Maeda and H. Nasu, Sol-gel derived CaO-and CeO2-stabilized ZrO2 fibers. Conversion process of gel to oxide and tensile strength, J. Europ. Ceram. Soc., 7, 295–305 (1991).CrossRefGoogle Scholar
  96. [96]
    T. Yogo, Synthesis of polycrystalline zirconia fibre with organozirconium precursor, J. Mater. Sci., 25, 2394–2398 (1990).CrossRefGoogle Scholar
  97. [97]
    Sakurai, T. Fukui and M. Okuyama, Hydrolysis method for preparing zirconia fibers, Ceram. Bull., 7[4], 673–674 (1991).Google Scholar
  98. [98]
    H. Goto, H. Tomioka, T. Gunji, Y. Nagao, T. Misono, and Y. Abe, Preparation of continuous ZrO2-Y2O3 fibers by precursor method using polyzirconoxane, J. Ceram. Soc. Japan, 101[3], 336–341 (1993).Google Scholar
  99. [99]
    M. Chatterjee, A. Chatterjee and D. Ganguli, Preparation of ZrO2-CaO and ZrC2MgO fibres by alkoxide sol-gel processing, Ceram. Intern., 18, 4349 (1992).Google Scholar
  100. [100]
    Y. Abe, H. Tomioka, T. Gunji, Y. Nagao and T. Misono, A one-pot synthesis of poly-zirconoxane as a precursor for continuous zirconia fibres, J. Mater. Sci. Letters, 13, 960–962 (1994).CrossRefGoogle Scholar
  101. [101]
    K. J. McClellan, H. Sayir, A. H. Heuer, A. Sayir, J. S. Haggerty and J. Sigalovsky, High-strength, creep-resistant Y2O3-stabilized cubic ZrO2 single-crystal fibers, Ceram. Eng. Sci. Proc., 14[7-8], 651–659 (1993).CrossRefGoogle Scholar
  102. [102]
    Birkby, I. and Stevens, R., Applications of zirconia ceramics, in Key Engineering Materials, 122-124, 527–552, Trans. Tech. Publications, Switzerland (1996).Google Scholar
  103. [103]
    G. S. Corman, Creep of yttrium-aluminum garnet single-crystal, J. Mater. Sci. Letters, 12, 379–382 (1993).CrossRefGoogle Scholar
  104. [104]
    S. Karato, Z. Wang and K. Fujino, High temperature creep of yttrium-aluminum garnet single-crystals, J. Mater. Sci, 29, 6458–6462 (1994).CrossRefGoogle Scholar
  105. [105]
    T. A. Parthasarathy, T. I. Mah and K. Keller, Creep mechanism of polycrystalline yttrium aluminum garnet, J. Amer. Ceram. Soc., 75[7]. 1756–1759 (1992).CrossRefGoogle Scholar
  106. [106]
    B. H. King, Y. Liu, R. M. Laine and J. W. Halloran, Fabrication of yttrium aluminate fibers, Ceram. Eng. Sci. Proc, 14[7-8], 639–650 (1993).CrossRefGoogle Scholar
  107. [107]
    King and J. W. Halloran, Polycrystalline yttrium aluminum garnet fibers from colloidal sols, J. Amer. Ceram. Soc., 75[8], 2141–2148 (1995).CrossRefGoogle Scholar
  108. [108]
    G. N. Morscher, Chen and S. Mazdiyasni, Creep resistance of developmental polycrystalline yttrium-aluminum garnet fibers, Ceram. Eng. Sci. Proc., 15[4], 181 (1994).CrossRefGoogle Scholar
  109. [109]
    D. Popovich and J. L. Lombardi, Fabrication and mechanical properties of polymer melt spun yttrium aluminum garnet (YAG) fiber, Ceram. Eng. Sci. Proc., 18[3], 65–72 (1997).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher 2000

Authors and Affiliations

  • R. Naslain

There are no affiliations available

Personalised recommendations