Cerebral Correlates of Human Auditory Processing

Perception of Speech and Musical Sounds
  • Robert J. Zatorre


Speech and music are perhaps the most interesting way that human cognition makes use of sound. It seems likely that the complex mental operations necessary for the processing of speech and music would demand a correspondingly complex set of neural computations. This paper will review some studies from our laboratory aimed at exploring these issues, utilizing both the traditional behavioral-lesion approach as well as recent brain imaging techniques. Among the latter methods, we have used both functional brain imaging, with positron emission tomography (PET), as well as structural imaging, with magnetic resonance imaging (MRI). These techniques allow us to explore cerebral activation patterns associated with the performance of certain tasks in healthy volunteer subjects, and also allow us to begin to explore structure-function relationships in the brain. We have followed the strategy of adapting or developing behavioral tasks drawn from the fields of psychophysics and cognitive psychology in order to study the neural correlates of a wide range of psychological processes relevant to auditory cognition. The tasks to be described in this paper focus on aspects of phonetic perception, melodic processing, auditory working memory, and auditory imagery. Each of these areas will be discussed in turn, preceded by a brief introduction to functional imaging methods. To conclude, we present some novel findings from structural imaging measures which may have direct relevance to understanding some aspects of functional results.


Cerebral Blood Flow Auditory Cortex Supplementary Motor Area Superior Temporal Gyrus Noise Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin, L.M. (1986) The Auditory Midbrain. Clifton NJ: Humana press.CrossRefGoogle Scholar
  2. Binder, J.R., Rao, S.M., Hammeke, T.A. et al. (1994) Functional MRI of human auditory cortex. Annals of Neurology, 35, 662–672.PubMedCrossRefGoogle Scholar
  3. Blumstein, S.E., Baker, H. and Goodglass, H. (1977) Phonological factors in auditory comprehension in aphasia. Neuropsychologia, 15, 19–30.PubMedCrossRefGoogle Scholar
  4. Brugge, J.F. and Reale, R.A. (1985). Auditory cortex, in Cerebral Cortex, Vol. 4. Edited by A. Peters and E.G. Jones. New York: Plenum Press, pp. 229–271.Google Scholar
  5. Chavis, D., and Pandya, D.N. (1976) Further observations on corticofrontal pathways in the rhesus monkey. Brain Res. 117: 369–386.PubMedCrossRefGoogle Scholar
  6. Colombo, M., D’Amato, M.R., Rodman, H.R., and Gross, C.G. (1990) Auditory association cortex lesions impair auditory short-term memory in monkeys. Science 247: 336–338.PubMedCrossRefGoogle Scholar
  7. Collins, D.L., Neelin, P., Peters, T.M. & Evans, A.C. (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr., 18, 192–205.PubMedCrossRefGoogle Scholar
  8. Démonet, J.-F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J.-L., Wise, R., Rascol, A. and Frackowiak, R. (1992) The anatomy of phonological and semantic processing in normal subjects. Brain, 115, 1753–1768.PubMedCrossRefGoogle Scholar
  9. Démonet. J.-F., Price, C., Wise, R., and Frackowiack, R.S.J. (1994) A PET study of cognitive strategies in normal subjects during language tasks. Brain, 117, 671–682.PubMedCrossRefGoogle Scholar
  10. Deutsch, D. (1970) Tones and numbers: Specificity of interference in short-term memory. Science, 168, 1604–1605.PubMedCrossRefGoogle Scholar
  11. Deutsch, D. (1982) The processing of pitch combinations. In: The Psychology of Music (Deutsch D., ed). New York: Academic Press.Google Scholar
  12. Diamond, I.T., Fitzpatrick, D., and Sprague, J.M. (1985) The extrastraite visual cortex. In: Cerebral Cortex, Vol. 4. (Peters A, Jones EG, eds.), pp. 63–87. New York: Plenum Press.Google Scholar
  13. Divenyi, P.L. and Robinson, A.J. (1989) Nonlinguistic auditory capabilities in aphasia. Brain Lang., 37. 290–326.PubMedCrossRefGoogle Scholar
  14. Dowling, W.J. and Harwood, D.L. (1986) Music Cognition. Orlando, Fla.: Academic Press.Google Scholar
  15. Evans, A.C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., Milot, S., Meyer, E., Bub, D. (1992) Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage, 1, 43–53.PubMedCrossRefGoogle Scholar
  16. Evarts, E.V. (1952) Effect of auditory cortex ablation on frequency discrimination in monkey. J. Neurophysiol. 15: 443–448.PubMedGoogle Scholar
  17. Farah, M.J. (1988). Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychol. Rev., 95, 307–317.PubMedCrossRefGoogle Scholar
  18. FitzPatrick, K.A. and Imig, T.J. (1982) Organization of auditory connections: The primate auditory cortex. In: Cortical Sensory Organization, Vol. 3. Edited by C.N. Woolsey. Clifton, N.J.: Humana Press.Google Scholar
  19. Gainotti, G., Miceli, G., Silveri, M.C., and Villa, G. (1982) Some anatomo-clinical aspects of phonemic and semantic comprehension disorders in aphasia. Acta Neurol. Scandinav., 66, 652–665.CrossRefGoogle Scholar
  20. Galaburda, A. and Sanides, F. (1980) Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190:597–610.PubMedCrossRefGoogle Scholar
  21. Gottlieb, Y., Vaadia, E. and Abeles, M. (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp. Brain Res. 74: 139–148.PubMedCrossRefGoogle Scholar
  22. Gross, CG. and Weiskrantz, L. (1962) Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Exper. Neurol., 5, 453–476.CrossRefGoogle Scholar
  23. Halpern, A.R. (1988). Mental scanning in auditory imagery for tunes. J. Exp. Psychol.: Learn., Mem. Cognit., 14, 434–443.CrossRefGoogle Scholar
  24. Heffner, H.E. and Masterton, B. (1978) Contribution of auditory cortex to hearing in the monkey (Macaca raulatta). In: Recent advances in primatology: Vol I. Behaviour. (Chivers DJ, Herbert J, ed). New York: Academic Press.Google Scholar
  25. Hutsler, J.J. and Gazzaniga, M.S. (1996) Acetylcholinesterase staining in human auditory and language cortices—regional variation of structural features. Cereb. Cortex, 6, 260–270.PubMedCrossRefGoogle Scholar
  26. Iversen, S.D. and Mishkin, M. (1973) Comparison of superior temporal and inferior prefrontal lesions on auditory and non-auditory tasks in rhesus monkeys. Brain Res., 55, 355–367.PubMedCrossRefGoogle Scholar
  27. Jerison, H.J. and Neff, W.D. (1953) Effect of cortical ablation in the monkey on discrimination of auditory patterns. Fed. Proc. 12:237.Google Scholar
  28. Kosslyn, S. M., Ball, T. M. and Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. J. Exp. Psychol.: Hum. Percep. Perf, 4, 47–60.CrossRefGoogle Scholar
  29. Kosslyn, S.M., Alpert, N.M., Thompson, W.L., Maljkovic, V, Weise S.B., Chabris, C.F, Hamilton, S.E., Rauch, S.L., and Buonanno, F.S. (1993). Visual mental imagery activates topographically organized visual cortex: PET investigations. J. Cog. Neurosci., 5, 263–287.CrossRefGoogle Scholar
  30. Liberman, A.M. and Mattingly, I.G. (1985) The motor theory of speech perception revised. Cognition, 21, 1–36.PubMedCrossRefGoogle Scholar
  31. Liegeois-Chauvel C, Musolino A, Chauvel P. (1991) Localization of the primary auditory area in man. Brain 114: 139–153.PubMedGoogle Scholar
  32. Marin, O.S.M. and Perry, D.W. (in press) Neurological aspects of music perception and performance. In: The Psychology of Music, 2nd Edition (Deutsch D, ed). New York: Academic Press.Google Scholar
  33. McKenna, T.M., Weinberger, N.M. and Diamond, D.M. (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res. 481: 142–153.PubMedCrossRefGoogle Scholar
  34. Milner, B. (1962). Laterality effects in audition. In: Interhemispheric Relations and Cerebral Dominance. (Mountcastle VB, ed), pp. 177–195. Baltimore: Johns Hopkins Press.Google Scholar
  35. Milner, B. and Petrides, M. (1984) Behavioural effects of frontal-lobe lesions in man. Trends Neurosci. 7: 403–407.CrossRefGoogle Scholar
  36. Paulesu, E., Frith, C.D. and Frackowiak, R.S.J. (1993) The neural correlates of the verbal component of short-term memory. Nature, 362, 342–345.PubMedCrossRefGoogle Scholar
  37. Paus, T., Perry, D.W., Zatorre, R.J., Worsley, K.J. and Evans, A.C. (1996) Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Europ. J. Neurosci., 8, 2236–2246.CrossRefGoogle Scholar
  38. Penhune, V.B., Zatorre, R.J., Mac Donald, J.D., and Evans, A.C. (1996) Interhemispheric anatomical differences in human primary auditory cortex: Probabilistic mapping and volume measurement from MR scans. Cereb. Cortex, 6, 661–672.PubMedCrossRefGoogle Scholar
  39. Peretz, I., Kolinsky, R., Tramo, M., Labrecque, R., Hublet, C, Demeurisse, G. and Belleville, S. (1994) Functional dissociations following bilateral lesions of auditory cortex. Brain, 117, 1283–1301.PubMedCrossRefGoogle Scholar
  40. Perry, D.W., Petrides, M., Alivisatos, B., Zatorre, R.J., Evans, A.C., and Meyer, E. (1993) Functional activation of human frontal cortex during tonal working memory tasks. Soc. Neurosci. Abs., 19, 843.Google Scholar
  41. Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., and Raichle, M.E. (1988) Positron emission tomographic studies of the cortical anatomy of single word processing. Nature, 331, 585–589.PubMedCrossRefGoogle Scholar
  42. Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., and Raichle, M.E. (1989) Positron Emission Tomography studies of the processing of single words. J. Cog. Neurosci., 1, 153–170.CrossRefGoogle Scholar
  43. Petrides, M. and Pandya, D.N. (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J. Comp. Neurol. 273: 52–66.PubMedCrossRefGoogle Scholar
  44. Petrides, M., Alivisatos, B., Meyer, M. and Evans, A.C. (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc. Natl. Acad. Sci. USA 90: 878–882.PubMedCrossRefGoogle Scholar
  45. Price, C, Wise, R., Ramsay, S., Fristen, K., Howard, D., Patterson, K., and Frackowiak, R.S.J. (1992) Regional response differences within the human auditory cortex when listening to words. Neurosci. Letters, 146, 179–182.CrossRefGoogle Scholar
  46. Rademacher, J., Caviness, VS., Steinmetz, H. and Galaburda, A.M. (1993). Topographical variation of the human primary cortices: complications for neuroimaging, brain mapping and neurobiology. Cereb. Cortex, 3, 313–329.PubMedCrossRefGoogle Scholar
  47. Rao, S.M., Binder, J.R., Bandettini, P.A., Hammeke, T.A., Yetkin, F.Z., Jesmanowicz, A., Lisk, L.M., Morris, G.L., Mueller, W.M., Estkowski, L.D., Wong, E.C., Haughton, V.M., and Hyde, J.S. (1993) Functional magnetic resonance imaging of complex human movements. Neurology, 43, 2311–2318.PubMedCrossRefGoogle Scholar
  48. Robin, D.A., Tranel, D. and Damasio, H. (1990) Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain Lang., 39, 539–555.PubMedCrossRefGoogle Scholar
  49. Samson, S. and Zatorre, R.J. (1988) Discrimination of melodic and harmonic stimuli after unilateral cerebral excisions. Brain Cognit., 7, 348–360.CrossRefGoogle Scholar
  50. Samson, S. and Zatorre, R.J. (1992) Learning and retention of melodic and verbal information after unilateral temporal lobectomy. Neuropsychologia, 30, 815–826.PubMedCrossRefGoogle Scholar
  51. Samson, S. and Zatorre, R.J. (1994) Contribution of the right temporal lobe to musical timbre discrimination. Neuropsychologia, 32, 231–240.PubMedCrossRefGoogle Scholar
  52. Seldon, H.L. (1981) Structure of human auditory cortex II: axon distributions and morphological correlates of speech perception. Brain Res., 229, 295–310.PubMedCrossRefGoogle Scholar
  53. Seldon, H.L. (1982) Structure of human auditory cortex III: statistical analysis of dendritic trees. Brain Res., 249, 211–221.PubMedCrossRefGoogle Scholar
  54. Sidtis, JJ. and Volpe, B.T. (1988) Selective loss of complex-pitch or speech discrimination after unilateral lesion. Brain Lang., 34, 235–245.PubMedCrossRefGoogle Scholar
  55. Stepien, L.S., Cordeau, J.P. and Rasmussen, T. (1960). The effect of temporal lobe and hippocampal lesions on auditory and visual recent memory in monkeys. Brain, 83, 470–489.CrossRefGoogle Scholar
  56. Steinschneider, M., Schroeder, CE., Arezzo, J.C., and Vaughan, H.G. (1995) Physiologic correlates of the voiceonset time boundary in primary auditory cortex of awake monkey: temporal response patterns. Brain Lang., 48, 326–340.PubMedCrossRefGoogle Scholar
  57. Talairach, J., and Tournoux, P. (1988) Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme.Google Scholar
  58. Tallal, P., Miller, S. and Fitch, R.H. (1992) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann. N.Y. Acad. Sci., 682, 27–47.CrossRefGoogle Scholar
  59. Tramo, M.J. and Gazzaniga, M. (1989) Discrimination and recognition of complex harmonic spectra by the cerebral hemispheres: Differential lateralization of acoustic-discriminative and semantic-associative functions in auditory pattern perception. Soc. Neurosci. Abstr., 15, 1060.Google Scholar
  60. VonEconomo, C. and Horn, L. (1930) Uber Windungsrelief, Masse und Rindenarchitektonik der Supratemporalflache, ihre individuellen und ihre Seitenunterschiede. Z. Neurol. Psychiat., 130, 678–757.CrossRefGoogle Scholar
  61. Whitfield, I.C. and Evans, E.F. (1965) Responses of auditory cortical neurones to stimuli of changing frequency. J. Neurophysiol., 28, 655–672.PubMedGoogle Scholar
  62. Wise, R.J., Chollet, F., Hadar, U., Friston, K., Hoffner, E., and Frackowiak, R., (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114, 1803–1817.PubMedCrossRefGoogle Scholar
  63. Worsley, K.J., Evans, A.C., Marrett, S., and Neelin, P. (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab., 12, 900–918.PubMedCrossRefGoogle Scholar
  64. Zatorre, R.J. (1985) Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia, 23, 31–41.PubMedCrossRefGoogle Scholar
  65. Zatorre, R.J. (1988) Pitch perception of complex tones and human temporal-lobe function. J. Acous. Soc. Amer., 84, 566–572.CrossRefGoogle Scholar
  66. Zatorre, R.J., Evans, A.C., Meyer, E., and Gjedde. A. (1992) Lateralization of phonetic and pitch processing in speech perception. Science, 256, 846–849.PubMedCrossRefGoogle Scholar
  67. Zatorre, R.J., Evans, A.C., and Meyer, E. (1994) Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci., 14, 1908–1919.PubMedGoogle Scholar
  68. Zatorre, R.J. and Halpern, A.R. (1993) Effect of unilateral temporal-lobe excision on auditory perception and imagery. Neuropsychologia, 31, 221–232.PubMedCrossRefGoogle Scholar
  69. Zatorre, R.J., Halpern, A.R., Perry, D.W., Meyer. E. and Evans, A.C. (1996b) Hearing in the mind’s ear: A PET investigation of musical imagery and perception. J. Cognit. Neurosci.. 8, 29–46.CrossRefGoogle Scholar
  70. Zatorre, R.J., Meyer, E., Gjedde, A., and Evans, A.C. (1996a) PET studies of phonetic processing of speech: Review, replication, and re-analysis. Cereb. Cortex, 6, 21–30.PubMedCrossRefGoogle Scholar
  71. Zatorre, R.J. and Samson, S. (1991). Role of the right temporal neocortex in retention of pitch in auditory shortterm memory. Brain, 114, 2403–2417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert J. Zatorre
    • 1
  1. 1.Montreal Neurological InstituteMcGill UniversityMontrealCanada

Personalised recommendations