Neutron Emission Spectroscopy for Magnetic Confinement Experiments

  • Jan Källne


The purpose of neutron diagnostics (ND) for magnetically confined plasmas of extended volumes, such as those of tokamaks, is to measure the flux and the energy distribution (spectrum) of the neutron emission for a representative selection of volume elements. ND should determine the total and local neutron yield rates of the plasma, Yn(t) and yn(x,y), as well as provide information for the deduction of the velocity distribution of the ions responsible for yn(x,y). Unfortunately, local ND measurements are impossible so three surrogates are used, namely, (i) calibrated flux measurements for information on Yn; (ii) collimated flux measurements for yn(x,y) and Yn(t); (iii) spectral measurements2 of collimated fluxes for information on the fuel ionic state of the plasma as well as on fast ions of other species besides collective ion motion (rotation).


Neutron Spectrum Neutron Emission Neutral Beam Fusion Power Neutron Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G Sadler, et al, Calibration issues for neutron diagnostics, in Diagnostics for experimental thermonuclear reactors 2, edited by P.E. Stott, G. Gorini, P Parndoni and E. Sindoni (Plenum press, New York, 1998), pp. 501–510.Google Scholar
  2. 2.
    M Keilhacker and the JET teamNuclear Fusion39, 209 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    B Rose, AE Taylor and E Wood, Nature181, 1630 (1958).ADSCrossRefGoogle Scholar
  4. 4.
    J Strachan, et al, Nature279, 626, (1979).ADSCrossRefGoogle Scholar
  5. 5.
    W Fisher, S Cien, D Gwinn and R Parker, Nucl. Inst. Meth.219, 179–91 (1984).CrossRefGoogle Scholar
  6. 6.
    N Jarvis, G Gorini, J Källne, V Merlo, Sadler, v Belle, Nucl. Fusion27, 1755 (1987).CrossRefGoogle Scholar
  7. 7.
    T Elevant, et al Nucl. Inst. Meth.A306, 331(1991).ADSGoogle Scholar
  8. 8.
    J Källne, L Ballabio, S Conroy, G Ericsson, J Frenje, G Gorini, M Tardocchi and E Traneus, Rev. Sci. Instr.70, 1181(1999).ADSCrossRefGoogle Scholar
  9. 9.
    M Tardocchi, in Neutron emission spectroscopy studies of fusion plasmas of deuterium-tritium in tokamaks, Ph.D. thesis, Uppsala University, Sweden, 2000,; and to appear in Nuclear Fusion.Google Scholar
  10. 10.
    J Källne, L Ballabio, J Frenje, S Conroy, G Ericsson, M Tardocchi and E Traneus, Phys. Rev. Lett, 86, 1246–49(2000).CrossRefGoogle Scholar
  11. 11.
    N Jarvis, Neutron spectrometry at JET (1983–1999), JET report P(00)03 (2000), to appear in Nucl Inst and Methods.Google Scholar
  12. 12.
    A Hjalmmarsson, contribution to these proceedings.Google Scholar
  13. 13.
    G Ericsson, contribution to these proceedingsGoogle Scholar
  14. 14.
    P Antozzi, G Gorini, J Källne, and E Ramström, Nucl. Instr. Meth.A386, 457(1996)ADSGoogle Scholar
  15. 13.
    A Costley, contribution to these proceedings.Google Scholar
  16. 16.
    H Henriksson, S. Conroy, G. Ericsson, G. Gorini, A. Hjalmarsson, J. Källne and M. Tardocchi Neutron emission from JET DT plasmas with RF heating on minority hydrogen’ Uppsala Univ. Neutron Physics Report, UU-NF 01/#7(2001); submitted toPlasma Physics and Controlled Fusion.Google Scholar
  17. 17.
    S Conroy, private communication.Google Scholar
  18. 18.
    H. Heniksson, The MPR neutron spectrometer at JET and implications for future applications, Diploma thesis, Uppsala Univ. Neutron Physics Report, UU-NF 99/#1 (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jan Källne
    • 1
  1. 1.Department of Neutron Research (INF)Uppsala University, EURATOM-VR AssociationUppsalaSweden

Personalised recommendations