Advertisement

Nuclear Diagnostics of ICF

  • N. Izumi
  • R. A. Lerche
  • M. J. Moran
  • T. W. Phillips
  • T. C. Sangster
  • G. J. Schmid
  • M. A. Stoyer
  • L. Disdier
  • J. L. Bourgade
  • A. Rouyer
  • R. K. Fisher
  • R. R. Berggren
  • S. E. Caldwell
  • J. R. Faulkner
  • J. M. Mack
  • J. A. Oertel
  • C. S. Young
  • V. Yu. Glebov
  • P. A. Jaanimagi
  • D. D. Meyerhofer
  • J. M. Soures
  • C. Stoeckl
  • J. A. Frenje
  • C. K. Li
  • R. D. Petrasso

Abstract

In inertial confinement fusion (ICF), a high temperature and high density plasma is produced by the spherical implosion of a small capsule1. A spherical target capsule is irradiated uniformly by a laser beam (direct irradiation) or x-rays from a high Z enclosure (hohlraum) that is irradiated by laser or ion beams (indirect irradiation). Then high- pressure ablation of the surface causes the fuel to be accelerated inward. Thermonuclear fusion reactions begin in the center region of the capsule as it is heated to sufficient temperature (10 keV) by the converging shocks (hot spot formation). During the stagnation of the imploded shell, the fuel in the shell region is compressed to high density (∼103 times solid density in fuel region). When these conditions are established, energy released by the initial nuclear reactions in center “hot-spot” region can heat up the cold “fuel” region and cause ignition.

Keywords

Areal Density Inertial Confinement Fusion Neutron Imaging Secondary Neutron National Ignition Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas2, 3933–4024 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    H. Brysk, Fusion neutron energies and spectra, Plasma Phys.15, 611–617, (1973)ADSCrossRefGoogle Scholar
  3. 3.
    F. E. Cecil and F. J. Wilkinson, III, Measurement of the ground-state gamma-Ray branching ratio of the dt reaction at low energies, Phys. Rev. Lett.53, 767–770, (1984)ADSCrossRefGoogle Scholar
  4. 4.
    D. R. Welch, H. Kislev, and G. H. Miley, Tertiary fusion neutron diagnostic for density-radius product and stability of inertial confinement fusion, Rev. Sci. Instrum.59, 610–615, (1988); R. D. Petrasso, C. K. Li, M. D. Cable, et al., Measuring implosion symmetry and core conditions in the National Ignition Facility, Phys. Rev. Lett. 77, 2718-2721, (1996); S. Cremer, C. P. Verdon, R. D. Petrasso, Tertiary proton diagnostics in future inertial confinement fusion experiments, Phys. Plasmas 5, 4009-4014, (1998)ADSCrossRefGoogle Scholar
  5. 5.
    H. Azechi, M. D. Cable, and R. O. Stapf, Review of secondary and tertiary reactions, and neutron scattering as diagnostic techniques for inertial confinement fusion targets, Laser Part. Beams9, 119–134, (1991)ADSCrossRefGoogle Scholar
  6. 6.
    S. M. Lane, M. D. Cable, W. R. Graves, et al., Advanced Neutron Measurements, Lawrence Livermore National Laboratory Report, No. UCRL-50021-84, 1985, p. 5–61Google Scholar
  7. 7.
    J. A. Frenje, K. M. Green, D. G. Hicks, et al., A neutron spectrometer for precise measurements of DT neutrons from 10 to 18 MeV at OMEGA and the National Ignition Facility, Rev. Sci. Instrum. 72, 854–858, (2001)ADSCrossRefGoogle Scholar
  8. 8.
    T. E. Blue and D. B. Harris, The ratio of D-T to D-D reactions as a measure of the fuel density-radius product in initially tritium-free inertial confinement fusion-targets, Nucl. Sci. Eng.77, 463–469 (1981)Google Scholar
  9. 9.
    Stephen P. Hatchett (private communication, Aug. 17, 2000)Google Scholar
  10. 10.
    Thomas J. Murphy, Cris W. Barnes et al., Nuclear diagnostics for the National Ignition facility, Rev. Sci. Instrum.72, 773–779 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    G. J. Schmid, V. Yu. Glebov, A. V. Friensehner, et al., CVD diamond detectors for current mode neutron time-of-flight spectroscopy at OMEGA/NIF, To be published in theProceedings of the SPIE, vol. 4510A-10 (2001)Google Scholar
  12. 12.
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, et al., Initial performance results of the OMEGA laser system, Opt. Comm., 133, 495–506 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    N. Izumi, R. A. Lerche, T. W. Phillips et al., Development of lower energy neutron spectroscopy for areal density measurement in implosion experiment at NIF and OMEGA, To be published in the Proceedings of the SPIE, vol. 4510A-29 (2001)Google Scholar
  14. 14.
    R. A. Lerche, D. Ress, R. J. Ellis, et al., Neutron penumbral imaging of laser fusion targets, Laser and Part. Beams9, 99 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    R. R. Berggren, S. E. Caldwell, J. R. Faulkner, Jr., R. A. Lerche, et al., Gamma-ray-based fusion measurements, Rev. Sci. Instrum.72, 873–876 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • N. Izumi
    • 1
  • R. A. Lerche
    • 1
  • M. J. Moran
    • 1
  • T. W. Phillips
    • 1
  • T. C. Sangster
    • 5
  • G. J. Schmid
    • 1
  • M. A. Stoyer
    • 1
  • L. Disdier
    • 2
  • J. L. Bourgade
    • 2
  • A. Rouyer
    • 2
  • R. K. Fisher
    • 3
  • R. R. Berggren
    • 4
  • S. E. Caldwell
    • 4
  • J. R. Faulkner
    • 4
  • J. M. Mack
    • 4
  • J. A. Oertel
    • 4
  • C. S. Young
    • 4
  • V. Yu. Glebov
    • 5
  • P. A. Jaanimagi
    • 5
  • D. D. Meyerhofer
    • 5
  • J. M. Soures
    • 5
  • C. Stoeckl
    • 5
  • J. A. Frenje
    • 6
  • C. K. Li
    • 6
  • R. D. Petrasso
    • 6
  1. 1.Lawrence Livermore National LaboratoryLivermore
  2. 2.Commissariat à l’Energie AtomiqueBruyères-le-ChâtelFrance
  3. 3.General AtomicsSan Diego
  4. 4.Los Alamos National LaboratoryLos Alamos
  5. 5.Laboratory for Laser EnergeticsUniversity of RochesterRochester
  6. 6.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyCambridge

Personalised recommendations