Glacial Cycles and Interplanetary Dust

  • Richard A. Muller


Spectral analysis of proxy global ice data shows conclusively that the cycles of glaciation are astronomically driven. However the same analysis shows serious, perhaps fatal, difficulties with the standard (Milankovitch) theory. We argue that only the 41 kyr cycle of glaciation can be driven by insolation, and that the 100 kyr cycle, dominant for the past million years, is driven by orbital inclination. The linking mechanism is uncertain, although the most likely candidate is that variations in accreting interplanetary dust modulate the cloud cover, and this in turn drives the major glacial cycles.


Glacial Cycle Orbital Inclination Interplanetary Dust Summer Insolation Noctilucent Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, A. C. and McPeters, R. D. Meteoric material and the behavior of upper stratospheric polar ozone. Geophys. Res. Lett. 13, 1300–1303 (1986).ADSCrossRefGoogle Scholar
  2. Alvarez, W., Asaro, F., and Montanari, A. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy). Science 250, 1700–1702 (1990).ADSCrossRefGoogle Scholar
  3. Berger, W. H. The 100-kyr ice-age cycle: Internal oscillation or inclinational forcing? Intl. J. Earth Sci. 88, 305–316(1999).CrossRefGoogle Scholar
  4. Berger, W. H., Bickert, T., Wefer, G., and Yasuda, M. K. Brunhes-Matuyama boundary: 790 k.y. data consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch template. Geophys. Res. Lett. 22, 1525–1528(1995).ADSCrossRefGoogle Scholar
  5. Blackman, R. B. and Tukey, J. W. The Measurement of power spectra. Dover, New York, 190 pp. (1958).Google Scholar
  6. Broecker, W. S. and van Donk, J. Insolation changes, ice volumes and the 18O record in deep-sea cores. Rev. Geophys. Space Phys. 8, 169–197 (1970).ADSCrossRefGoogle Scholar
  7. Deming, D. On the possible influence of extraterrestrial volatiles on Earth’s climate and the origin of the oceans. Palaeogeogr., Palaeoclimat., Palaeoecol. 146, 33–51 (1999).CrossRefGoogle Scholar
  8. Dermott, S. F., Grogan, K., Gustafson, B. A. S., Jayaraman, S., Kortenkamp, S. J., Xu, Y. L. In Physics, chemistry, and dynamics of interplanetary dust (Gustafson, B. A. S. and Hanner, M. S., Eds.), 143–153 (1996).Google Scholar
  9. Edwards, R. L. and Gallup, C. D. Dating of the Devil#x0027;s Hole calcite vein. Science 259, 1626 (1993).ADSCrossRefGoogle Scholar
  10. Farley, K. A 70 million year record of extraterrestrial helium fallout to the deep sea. Nature 378, 153–156 (1995).ADSCrossRefGoogle Scholar
  11. Farley, K. and Patterson, D. B. A 100 kyr periodicity in the flux of extraterrestrial He-3 to the seafloor. Nature 378, 600–603 (1995).ADSCrossRefGoogle Scholar
  12. Farley, K. A., Patterson, D. B., and Love, S. G. Helium in seafloor sediments: Size of He-3 bearing cosmic dust grains and observations of 100 ka cyclicity in He-3 and He-4 at ODP Site 806. Eos, Trans. AGU 77, F415–F416(1996).Google Scholar
  13. Farley, K. A., Love, S. G., and Patterson, D. B. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  14. Flynn, G. interplanetary dust particles collected from the stratosphere: Physical, chemical, and mineralog-ical properties and implications for their sources. Planet. Space Sci. 42, 1151–1161 (1994).ADSCrossRefGoogle Scholar
  15. Gallup, C. D., Cutler, K. B., Cheng, H., Edwards, H. L., Speed, R., Taylor, F. W., Adkine, J. F., Burr, G. S. Sea level record for the last 200,000 years from concordant U-Th and U-Pa dates of fossil corals: Implications for deep-sea temperature changes and for early sea level rise during Termination II. Eos, Trans. AGU 80, F581 (1999).Google Scholar
  16. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).ADSCrossRefGoogle Scholar
  17. Hays, I, Imbrie, J. and Shackleton, N. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132(1976).ADSCrossRefGoogle Scholar
  18. Henderson, G. M. and Slowey, N. C. Direct U-Th isochron dating of the penultimate deglaciation and the implicatons for the mechanism linking insolation to climate. Eos, Trans. AGU 80, F580–F581 (1999).CrossRefGoogle Scholar
  19. Henderson, G. M. and Slowey, N. C. Evidence from U-Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–65 (2000).ADSCrossRefGoogle Scholar
  20. Hunten, D. M., Turco, R. P., and Toon, O. B. Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J. Atmos. Sci. 37, 1342–1357 (1980).ADSCrossRefGoogle Scholar
  21. Imbrie, X, Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, C, Kutzbach, J., Martinson, D., Mclntyre, A., Mir, A., Molfino, B., Morley, J., Peterson, L., Pisias, N., Prell, W., Raymo, M., Shackleton, N., Toggweiller, J. On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).ADSCrossRefGoogle Scholar
  22. Imbrie, J. and Imbrie, K. P. Ice ages, solving the mystery. Harvard Univ. Press, Cambridge, 224 pp. (1979).Google Scholar
  23. Imbrie, J. and Imbrie, J. Z. Modeling the climate response to orbital variations. Science 207, 943–952 (1980).ADSCrossRefGoogle Scholar
  24. Imbrie, J., Mix, A. C, and Martinson, D. G. Milankovitch theory viewed from Devil’s Hole. Nature 363, 531–533 (1993).ADSCrossRefGoogle Scholar
  25. Johnson, R. G. and Wright, H. E. Great Basin calcite vein and the Pleistocene time scale: Comment. Science 246, 262 (1989).ADSCrossRefGoogle Scholar
  26. Karner, D. B. and Muller, R. A. Causality problem for Milankovitch. Science 288, 2143–2144 (2000).CrossRefGoogle Scholar
  27. Kernthaler, S. C, Toumi, R., and Haigh, J. D. Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Lett. 26, 863–865 (1999).ADSCrossRefGoogle Scholar
  28. Kortenkamp, S. J. and Dermott, S. F. A 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280, 874–876 (1998a).ADSCrossRefGoogle Scholar
  29. Kortenkamp, S. J. and Dermott, S. E Accretion of interplanetary dust particles by the Earth. Icarus 135, 469–495 (1998b).ADSCrossRefGoogle Scholar
  30. Kukla, G. J. The Pleistocene epoch and the evolution of man. Current Anthropology 9, 37–39 (1968).Google Scholar
  31. Lee, R. B., Gibson, M. A., Wilson, R. S., and Thomas, S. Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995).ADSCrossRefGoogle Scholar
  32. Ludwig, K. R., Simmons, K. R., Szabo, B. J., Winograd, I. J., and Landwehr, J. M. Mass spectrometric 23oTh-234U-238U dating of the Devil’s Hole calcite vein. Science 258, 284–287 (1992).ADSCrossRefGoogle Scholar
  33. Ludwig, K. R., Simmons, K. R., Winograd, I. J., Szabo, B. J., Landwehr, J. M., and Riggs, A. C. Last inter-glacial in Devils Hole, by N. J. Shackleton, a reply. Nature 362, 596 (1993a).ADSCrossRefGoogle Scholar
  34. Ludwig, K. R., Simmons, K. R., Winograd, I. J., Szabo, B. J., and Riggs, A. C. Dating of the Devils Hole calcite vein, by R. L. Edwards and C. D. Gallup, a response. Science 259, 1626–1627 (1993b).ADSCrossRefGoogle Scholar
  35. MacDonald, G. J. In Global climate and ecosystem change (MacDonald, G. J. and Sertorio, L., Eds.), Plenum, New York, 1–95 (1990).Google Scholar
  36. MacDonald, G. J. and Muller, R. A. Bispectral fingerprint identifies 100 k.y. climate cycle: Orbital inclination. LBL-36214, 13 pp. (1994).Google Scholar
  37. Marcantonio, F., Kumar, N., Stute, M., Anderson, R. F., Seidl, M. A., Schlosser, P., and Mix, A. A comparative study of accumulation rates derived by He andTh isotope analysis of marine sediments. Earth Planet. Sci. Lett. 133, 549–555 (1995).ADSCrossRefGoogle Scholar
  38. Muller, R. A. and MacDonald, G. J. Glacial cycles and astronomical forcing. Science 277, 215–218 (1997a).ADSCrossRefGoogle Scholar
  39. Muller, R. A. and MacDonald, G. J. Simultaneous presence of orbital inclination and eccentricity in proxy climate records from Ocean Drilling Program Site 806. Geology 25, 3–6 (1997b).ADSCrossRefGoogle Scholar
  40. Muller, R. A. and MacDonald, G. J. Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentric-ity. Proc. Nati. Acad. Sci. USA 94, 8329–8334 (1997c).ADSCrossRefGoogle Scholar
  41. Muller, R. A. and MacDonald, G. J. Ice ages and astronomical causes. Praxis, London, 318 pp. (2000).Google Scholar
  42. Rial, J. A. Pacemaking the ice ages by frequency modulation of earth’s orbital eccentricity. Science 285, 564–568 (1999).CrossRefGoogle Scholar
  43. Shackleton, N. J. Last interglacial in Devil’s Hole, Nevada. Nature 362, 596 (1993).ADSCrossRefGoogle Scholar
  44. Svensmark, H. Influence of cosmic rays on earth’s climate. Phys. Rev. Lett. 81, 5027–5030 (1998).ADSCrossRefGoogle Scholar
  45. Svensmark, H. and Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Solar-Terrestr. Phys. 59, 1225–1232 (1997).ADSCrossRefGoogle Scholar
  46. Tinsley, B. A. Correlations of atmospheric dynamics with solar wind-induced changes of air-earth current density into cloud tops. J. Geophys. Res. 101, 29,701–29,714 (1996).ADSCrossRefGoogle Scholar
  47. Turco, R. P., Toon, O. B., Hamill, P., and Whitten, R. C. Effects of meteoric debris on stratospheric aerosols and gases. J. Geophys. Res. 86, 1113–1128 (1981).ADSCrossRefGoogle Scholar
  48. Winograd, I. J. and Copland, T. B. Reply to Johnson and Wright. Science 246, 263 (1989).ADSCrossRefGoogle Scholar
  49. Winograd, I. J., Copien, T. B., Landwehr, J. M., Riggs, A. C, Ludwig, K. R., Szabo, B. J., Kolesar, P. T., Revesz, K. M. Continuous 500,000-year climate record from vein calcite in Devil’s Hole, Nevada. Science 258, 255–260 (1992).ADSCrossRefGoogle Scholar
  50. Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Copien, T. B., and Riggs, A. C. Duration and structure of the past four interglaciations. Quaternary Res. 48, 141–154 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Richard A. Muller
    • 1
    • 2
  1. 1.Department of PhysicsUniv. of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations