Extraterrestrial Material and Stratospheric Aerosols

  • Daniel M. Murphy


The composition of stratospheric aerosols has been measured for about 40 years, with some of the most intense efforts during the 1960s. A recent technique, particle analysis by laser ionization mass spectrometry, has shown that many stratospheric sulfuric acid aerosols also contain ablated material from meteors. Meteoritic material may affect the size distribution of aerosols in parts of the stratosphere. The amount of meteoritic material in stratospheric aerosols is not consistent with the upper end of estimates of the flux of extraterrestrial material into the Earth’s atmosphere. Transport of stratospheric aerosols into the troposphere will preferentially deposit ablated meteoritic material at middle latitudes compared to the tropics or poles.


Lower Stratosphere Sulfate Aerosol Ablate Material Stratospheric Aerosol Cosmic Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikin, A. D. and McPeters, R. D. Meteoric material and the behavior of upper stratospheric polar ozone. Geophys. Res. Lett. 13, 1300–1303 (1986).ADSCrossRefGoogle Scholar
  2. Anders, E. and Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214(1989).ADSCrossRefGoogle Scholar
  3. Biermann, U. M., Presper, T., Koop, T., Mößinger, J., Crutzen, P. X, and Peter, Th. The unsuitability of meteoritic and other nuclei for polar stratospheric cloud freezing. Geophys. Res. Lett. 23, 1693–1696 (1996).ADSCrossRefGoogle Scholar
  4. Bigg, E. K., Ono, A., and Thompson, W. J. Aerosol at altitudes between 20 and 37 km. Tellus 22, 550–563 (1970).ADSCrossRefGoogle Scholar
  5. Bogdan, A. and Kulmala, M. Aerosol silica as a possible candidate for the heterogeneous formation of nitric acid hydrates in the stratosphere. Geophys. Res. Lett. 26, 1433–1436 (1999).ADSCrossRefGoogle Scholar
  6. Brock, C. A., Hamill, P., Wilson, J. C, Johnsson, H. H., and Chan, K. R. Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol. Science 270,1650–1653 (1995).ADSCrossRefGoogle Scholar
  7. Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., and Peter, T. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785–5796 (1998).ADSCrossRefGoogle Scholar
  8. Chin, M. and Davis, D. D. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993–9005 (1995).ADSCrossRefGoogle Scholar
  9. Climatic Impact Assessment Program, Report of findings: The effects of stratospheric pollution by aircraft. DOT-TST-75-50 (Grobeck, A. J., Coroniti, S. C, and Cannon, R. H. Jr., Eds.), Dept. Transport., Washington, 551 pp. (1974).Google Scholar
  10. Cziczo, D. J., Thomson, D. S., and Murphy, D. M. Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol. Science 291, 1772–1775 (2001).ADSCrossRefGoogle Scholar
  11. Danielsen, E. E and Houben, H. Dynamics of the Antarctic stratosphere and implications for the ozone-hole. In Anthropogene Beeinflussung der Ozonschicht, DECHEMA, Frankfurt am Main, 191–242 (1988).Google Scholar
  12. Di Girolamo, P., Pappalardo, G., Spinelli, N., Berardi, V, and Velotta, R. Lidar observations of the stratospheric aerosol layer over southern Italy in the period 1991-1995. J. Geophys. Res. 101, 18,765–18,773(1996).ADSCrossRefGoogle Scholar
  13. Flynn, G. J. and Sutton, S. R. Synchrotron X-ray florescence analyses of stratospheric cosmic dust: New results for chondritic and low-nickel particles. Proc. Lunar Planet. Sci. Conf. 20, 335–342 (1990).ADSGoogle Scholar
  14. Gandrud, B. W., Sperry, P. D., Sanford, L., Kelly, K. K., Ferry, G. V, and Chan, K. R Filter measurement results from the Airborne Antarctic Ozone Experiment. J. Geophys. Res. 94, 11,285–11,297 (1989).ADSCrossRefGoogle Scholar
  15. Hamill, P., Turco, R. P., Kiang, C. S., Toon, O. B., and Whitten, R. C. An analysis of various nucleation mechanisms for sulfate particles in the stratosphere. J. Aeros. Sci. 13, 561–585 (1982).CrossRefGoogle Scholar
  16. Hardy, E. P., Krey, P. W., and Volchok, H. L. Global inventory and distribution of fallout plutonium. Nature 241,444–445(1973).ADSCrossRefGoogle Scholar
  17. Helmer, M, Plane, J. M. C, Qian, X, and Gardner, C. S. A model of meteoric iron in the upper atmosphere. J. Geophys. Res. 103, 10,913–10,925 (1998).ADSCrossRefGoogle Scholar
  18. Herrmann, U, Eberhard, P., Hidalgo, M. A., Kopp, E., and Smith, L. G. Metal ions and isotopes in sporadic E-layers during the Perseid meteor shower. Space Sci. 18, 249–252 (1978).Google Scholar
  19. Hofmann, D. J. and Rosen, J. M. On the background stratospheric aerosol layer. J. Atmos. Sci. 38, 168–181 (1981).ADSCrossRefGoogle Scholar
  20. Holton, J. R., Haynes, P. H., Mclntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995).ADSCrossRefGoogle Scholar
  21. Hughes, D. W. Cosmic dust influx to the earth. Space Res. 15, 531–539 (1975).Google Scholar
  22. Hunten, D. M, Turco, R. P., and Toon, O. B. Smoke and dust particles of meteoric origin in the mésosphère and stratosphere. J. Atmos. Sci. 37, 1342–1357 (1980).ADSCrossRefGoogle Scholar
  23. Junge, C. A worldwide stratospheric aerosol layer. Symposium on Atmospheric Ozone-II, Arosa, 1961, Intl. Union Geod. Geophys. Monogr. No. 19, 61–62 (1963).Google Scholar
  24. Junge, C. E., Chagnon, C. W., and Manson, J. E. Stratospheric aerosols. J. Meteorol. 18, 81–108 (1961).CrossRefGoogle Scholar
  25. Kane, T. J. and Gardner, C. S. Lidar observations of the meteoric deposition of mesospheric metals. Science 259, 1297–1300 (1993).ADSCrossRefGoogle Scholar
  26. Kent, G. S., McCormick, M. P., and Schaffner, S. K. Global optical climatology of the free tropospheric aerosol from 1.0-um satellite occultation measurements. J. Geophys. Res. 96, 5249–5267 (1991).ADSCrossRefGoogle Scholar
  27. Krieger, A. and Arnold, F. Evidence for upper stratospheric aerosols from balloon-borne mass spectrome-ters. Geophys. Res. Lett. 19, 2310–2304 (1992).ADSCrossRefGoogle Scholar
  28. Kyte, F. T. and Wasson, J. T. Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1228 (1986).ADSCrossRefGoogle Scholar
  29. Lal, D., l0Be in polar ice: Data reflect changes in cosmic ray flux or polar meteorology. Geophys. Res. Lett. 14, 785–788 (1987).ADSCrossRefGoogle Scholar
  30. Lazrus, A. L. and Gandrud, B. W. Stratospheric sulfate aerosol. J. Geophys. Res. 79, 3424–3431 (1974).ADSCrossRefGoogle Scholar
  31. Leipunskii, O. I., Konstantinov, J. E., Federov, G. A., and Scotnikova, O. G. Mean residence time of radioactive aerosols in the upper layers of the atmosphere based on fallout of high-altitude tracers. J. Geophys. Res. 75, 3569–3574 (1970).ADSCrossRefGoogle Scholar
  32. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  33. Lu, J., Mohnen, V A. Yue, G. K., and Jäger, H. Intercomparison of multiplatform stratospheric aerosol and ozone observations.J. Geophys. Res. 102, 16,127–16,136 (1997).ADSCrossRefGoogle Scholar
  34. Machta, L. and Telegadas, K. Examples of stratospheric transport. In Proc. second conf. on the climatic impact assessment program, Rep. No. DOT-TSC-OST-73-4, U. S. Dept. Transport., 47–56 (1973).Google Scholar
  35. Mills, M. J., Toon, O. B., and Solomon, S. A. 2D microphysical model of the polar stratospheric CN layer. Geophys. Res. Lett. 26, 1133–1136 (1999).ADSCrossRefGoogle Scholar
  36. Mossop, S. C. Stratospheric particles at 20 km. Nature 119, 325–326 (1963).ADSCrossRefGoogle Scholar
  37. Mossop, S. C. Volcanic dust collected at an altitude of 20 km. Nature 203, 824–827 (1964).ADSCrossRefGoogle Scholar
  38. Murphy, D. M. and Fahey, D. W. An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J. Geophys. Res. 99, 5325–5332 (1994).ADSCrossRefGoogle Scholar
  39. Murphy, D. M. and Thomson, D. S. Laser ionization mass spectroscopy of single aerosol particles. Aeros. Sci. Technol. 22, 237–249 (1995).CrossRefGoogle Scholar
  40. Murphy, D. M., Thomson, D. S., and Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 (1998).ADSCrossRefGoogle Scholar
  41. Plumb, R. A. and Ko, M. K. W. Interrelationships between mixing ratios of long-lived stratospheric constituents. J. Geophys. Res. 97, 10,145–10,156 (1992).ADSCrossRefGoogle Scholar
  42. Prather, M. J. and Rodriguez, J. M. Antarctic ozone: Meteoritic control of HNO3. Geophys. Res. Lett. 15, 1–4 (1988).ADSCrossRefGoogle Scholar
  43. Reid, G. C. The nucleation and growth of ice particles in the upper mesosphere. Adv. Space Res. 20, 1285–1291 (1997).ADSCrossRefGoogle Scholar
  44. Rietmeijer, F. J. M., Volcanic dust in the stratosphere between 34 and 36 km altitude during May, 1985. J. Volcanol. Geotherm. Res. 55, 69–83 (1993).ADSCrossRefGoogle Scholar
  45. Rietmeijer, F. J. M. Post-entry and volcanic contamination abundances of zinc, copper, selenium, germanium, and gallium in stratospheric micrometeorites. Meteoritics 30, 33–41 (1995).ADSGoogle Scholar
  46. Rosen, J. M. Stratospheric dust and its relationship to the meteoric influx. Space Sci. Rev. 9, 58–89 (1969).ADSCrossRefGoogle Scholar
  47. Rosen, J. M. The boiling point of stratospheric aerosols. J. Appl. Meteor. 10, 1044–1046 (1971).ADSCrossRefGoogle Scholar
  48. Russell, J. M. III, Tuck, A. F., Gordley, L. L., Park, J. H., Drayson, S. R., Harries, J. E., Cicerone, R. J., and Crutzen, P. J. HALOE Antarctic observations in the spring of 1991. Geophys. Res. Lett. 20, 719–722 (1993).ADSCrossRefGoogle Scholar
  49. Shedlovsky, J. P. and Paisley, S. On the meteoritic component of stratospheric aerosols. Tellus 18, 499–503 (1966).ADSCrossRefGoogle Scholar
  50. Sheridan, P. I, Brock, C. A., and Wilson, J. C. Aerosol particles in the upper troposphere and lower stratos-phere: Elemental composition and morphology of individual particles in northern midlatitudes. Geophys. Res. Lett. 21, 2587–2590 (1994).ADSCrossRefGoogle Scholar
  51. Solomon, S., Garcia, R. R., Olivero, J. I, Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T., and Muhleman, D. O. Photochemistry and transport of carbon monoxide in the middle atmosphere. J. Atmos. Sci. 42, 1072–1083 (1985).ADSCrossRefGoogle Scholar
  52. Testa, J. P., Jr., Stephens, J. R., Berg, W. W., Cahill, T. A., Onaka, T., Nakada, Y., Arnold, J. R., Fong, N., and Sperry, P. D. Collection of microparticles at high balloon altitudes in the stratosphere. Earth Planet. Sci. Lett. 98, 287–302 (1990).ADSCrossRefGoogle Scholar
  53. Thomason, L. W. and Poole, L. R. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes. J. Geophys. Res. 98, 23,003–23,012 (1993).ADSCrossRefGoogle Scholar
  54. Thomson, D. S., Schein, M. E., and Murphy D. M., Particle analysis by laser mass spectrometry WB-57F instrument overview. Aeros. Sci. Tech. 33, 153–169 (2000).CrossRefGoogle Scholar
  55. Turco, R. P., Toon, O. B., Hamill, P., and Whitten, R. C. Effects of meteoric debris on stratospheric aerosols and gases. J. Geophys. Res. 86, 1113–1128 (1981).ADSCrossRefGoogle Scholar
  56. Viezee, W. and Sing, H. B. The distribution of beryllium-7 in the troposphere: Implications on stratos-pheric/tropospheric air exchange. Geophys. Res. Lett. 7, 805–808 (1980).ADSCrossRefGoogle Scholar
  57. Weisenstein, D. K., Yue, G. K., Ko, M. K. W, Sze, N.-D., Rodriguez, J. M., and Scott, C. J. A two-dimensional model of sulfur species and aerosols. J. Geophys. Res. 102, 13,019–13,035 (1997).ADSCrossRefGoogle Scholar
  58. World Meteorological Organization. Scientific assessment of ozone depletion: 1998. Rept. No. 44, Geneva, 3.1–3.40(1999).Google Scholar
  59. Zhao, J., Toon, O. B., and Turco, R. P. Origin of condensation nuclei in the springtime polar stratosphere. J. Geophys. Res. 100, 5215–5227 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Daniel M. Murphy
    • 1
  1. 1.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations