Advertisement

Atmospheric Entry Heating of Interplanetary Dust

  • George J. Flynn

Abstract

The Earth is continually bombarded by interplanetary dust accreting at a rate of about 30,000 tons per year. Although most dust particles larger than about 100 μm in size vaporize on atmospheric entry producing meteors, smaller particles, typically ranging from 5 to 35 μ m in size, radiate heat so efficiently that they decelerate in the upper atmosphere without melting. The peak temperature reached during atmospheric deceleration of an interplanetary dust particle depends on the shape, size, density, entry velocity, entry angle, and radiational properties of the particle. Equations to model the atmospheric entry deceleration and heating of spherical interplanetary dust particles are described, and time-temperature heating profiles from computer simulations are presented. Entry heating modeling shows that most of the interplanetary dust from 5 to ~25 μm in size is not heated to its melting temperature, and many particles ~10 μm in size are not heated to temperatures at which their chemical composition or mineralogy is altered. Modeling shows that most interplanetary dust particles near 10 μm in diameter accrete onto the Earth with their organic matter intact, and these small interplanetary dust particles could have made a significant contribution to pre-biotic organic matter on Earth. The properties of interplanetary dust particles recovered from the Earth’s stratosphere and from the polar ices are in general agreement with the results of the entry heating modeling, confirming the general validity of the model.

Keywords

Dust Particle Atmospheric Density Interstellar Dust Lunar Planet Entry Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. Prebiotic organic matter from comets and asteroids. Nature 342, 255–258 (1989).ADSCrossRefGoogle Scholar
  2. Bonney, Ph. and Balages, D. Entry corridor of micrometeorites containing organic material. Lunar Planet. Sci. 19, 111–113 (1989).Google Scholar
  3. Brownlee, D. E. Cosmic dust: Collection and research. Arum. Rev. Earth Planet. Sci. 13, 147–173 (1985).ADSCrossRefGoogle Scholar
  4. Brownlee, D. E., Joswiak, D. J., Love, S. G., Nier, A. O., Schlutter, D. J., and Bradley, J. P. Identification of cometary and asteroidal particles in atmospheric IDP collections. Lunar Planet. Sci. 24, 205–206 (1993).ADSGoogle Scholar
  5. Farley, K., Love, S. G., and Patterson, D. Atmospheric entry heating and helium retentivity of interplanetary dust particles, Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  6. Flynn, G. J. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989a).ADSCrossRefGoogle Scholar
  7. Flynn, G. J. Atmospheric entry heating of micrometeorites. Proc. Lunar Planet. Sci. Conf. 19, 673–68 (1989b).ADSGoogle Scholar
  8. Flynn, G. X Cometary dust: A thermal criterion to identify cometary samples among the interplanetary dust collected from the stratosphere. In Analysis of interplanetary dust (Zolensky, M. E., Wilson, T. L., Rietmeijer, F. J. M., and Flynn, G. X, Eds.), AIP Conf. Proc. 310, AIP Press, 223–230 (1994).Google Scholar
  9. Flynn, G. J. Thermal gradients in IDPs: Effects of endothermic phase transition. Lunar Planet. Sci. 26, 405–406 (1995).ADSGoogle Scholar
  10. Flynn, G. X The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth, Moon, Planets 72, 469–474 (1996).ADSCrossRefGoogle Scholar
  11. Flynn, G. J. The contribution by interplanetary dust to noble gases in the atmosphere of Mars, J. Geophys. Res., 102, 9175–9182 (1997a).ADSCrossRefGoogle Scholar
  12. Flynn, G. X Collecting interstellar dust grains. Nature 387, 248 (1997b).ADSCrossRefGoogle Scholar
  13. Flynn, G. J. and McKay, D. S. An assessment of the meteoritic contribution to the Martian soil. J. Geophys. Res. 95(9), 14,497–14,509 (1990).ADSCrossRefGoogle Scholar
  14. Flynn, G,. X and Sutton, S. R. Cosmic dust particle densities: Evidence for two populations of stony micrometeorites. Proc. Lunar Planet. Sci. 21, 541–547 (1991).ADSGoogle Scholar
  15. Flynn, G. J. and Sutton, S. R. Trace elements in chondritic stratospheric particles: Zinc depletions as a possible indicator of atmospheric entry heating. Proc. Lunar Planet. Sci. Conf. 22, 171–184 (1992).ADSGoogle Scholar
  16. Flynn, G. J., Keller, L. P., Jacobsen, C, Wirick, S., and Miller, M. A. Organic carbon in interplanetary dust particles. In Bioastronomy’ 99: A new era in bioastronomy (Lemarchand, G. and Meech, K., Eds.), ASP Conf. Series 213, Astron. Soc. Pacific Press, 191–194 (2000).Google Scholar
  17. Fraundorf, P. The distribution of temperature maxima for micrometeorites decelerated in the Earth’s atmosphere without melting. Geophys. Res. Lett. 7, 765–768 (1980).ADSCrossRefGoogle Scholar
  18. Fraundorf, P., Lyons, T., and Schubert, P. The survival of solar flare tracks in interplanetary dust silicates on deceleration in the Earth’s atmosphere. J. Geophys. Res. 67, A409–A412 (1982).CrossRefGoogle Scholar
  19. Genge, M. J., Grady, M. M., and Hutchison, R. Evidence in a glassy cosmic spherule from Antarctica for grazing incidence encounters with the Earth’s atmosphere. Meteor. Planet. Sci. 31, 627–632 (1996).ADSCrossRefGoogle Scholar
  20. Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G. X, Bajt, S., and Bishoff, A. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteor. Planet. Sci. 33, 267–290 (1998).ADSCrossRefGoogle Scholar
  21. Grün, E., Gustafson, B. Å. S., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., and Zook, H. A. Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994).ADSGoogle Scholar
  22. Hunten, D. M. Soft entry of micrometeoroids at grazing incidence or by aerocapture. Icarus 129, 127–133 (1997).ADSCrossRefGoogle Scholar
  23. Ip, W. H. Meteoroid ablation processes in Titan’s atmosphere. Nature 345, 511–512 (1990).ADSCrossRefGoogle Scholar
  24. Jackson, A. A. and Zook, H. A. Orbital evolution of dust particles from comets and asteroids. Icarus 97, 70–84(1992).ADSCrossRefGoogle Scholar
  25. Love, S. G. and Brownlee D. E. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89, 26–43 (1991).ADSCrossRefGoogle Scholar
  26. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  27. Love, S. G. and Brownlee D. E. Peak atmospheric entry temperatures of micrometeorites. Meieoritics 29, 69–71 (1994).ADSGoogle Scholar
  28. Love, S. G., Joswiak, D. J., and Brownlee, D. E. Densities of stratospheric micrometeorites. Icarus 111, 227–236(1994).ADSCrossRefGoogle Scholar
  29. Maurette, M., Olinger, C, Christophe Michel-Levy, M., Vincent, C, and Kurat, G. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44–47 (1991).ADSCrossRefGoogle Scholar
  30. Moses, J. I. Meteoroid ablation in Neptune’s atmosphere. Icarus 99, 368–383 (1992).ADSCrossRefGoogle Scholar
  31. Nier, A. O. and Schlutter, D. J. The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics 28, 675–681 (1993).ADSGoogle Scholar
  32. Nier, A. O. Helium and neon in interplanetary dust particles. In Analysis of interplanetary dust (Zolensky, M. E., Wilson, T. L., Rietmeijer, F. J. M., and Flynn, G. J., Eds.), AIP Conf. Proc. 310, AIP Press, 115–126(1994).Google Scholar
  33. Öpik, E. J. Basis of the physical theory of meteor phenomena. Tartu Obs. Publ. 29, 51–66 (1937).Google Scholar
  34. Ratcliff, P. R., Taylor, A. D., and McDonnell, J. A. M. The relative efficiency of aerocapture for interplan-etary dust by the planets. Planet. Space Sci. 41, 603–608 (1993).ADSCrossRefGoogle Scholar
  35. Rizk, B., Hunten, D. M., and Engel, S. Effects of size-dependent emissivity on maximum temperatures during micrometeorite entry. J. Geophys. Res. 96, A2, 1303–1314 (1991).ADSCrossRefGoogle Scholar
  36. Sandford, S. A. and Bradley, J. P. Interplanetary dust particles collected in the stratosphere: Observations of atmospheric heating constraints on their interrelationships and sources. Icarus 82, 146–166 (1989).ADSCrossRefGoogle Scholar
  37. Southworth, R. B. and Sekanina, Z. Physical and dynamical studies of meteors. NASA CR-2316 (1973).Google Scholar
  38. Szydlik, P. P. and Flynn, G. J. Simulation of the interior temperature profiles of IDPs which undergo a phase transformation on atmospheric entry. Meteor. Planet. Sci. 32, A127–A128 (1997).Google Scholar
  39. Taylor, S., Lever, J. H., and Harvey, R. P. Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 899–903 (1998).ADSCrossRefGoogle Scholar
  40. Whipple, F. L. The theory of micrometeorites. Part I: In an isothermal atmosphere. Proc. Nat. Acad. Sci. 36, No. 12, 687–695(1950).ADSCrossRefGoogle Scholar
  41. Whipple F. L. The theory of micrometeorites. Part II: In hydrothermal atmospheres, Proc. Nat. Acad. Sci. 37, No. 1, 19–31 (1951).ADSCrossRefGoogle Scholar
  42. Whipple, F. L. On maintaining the meteoritic complex. Smithon. Astrophys. Obs., Spec. Rept. 239, 1–46 (1967).ADSGoogle Scholar
  43. Wyatt, S. O. and Whipple, F. L. The Poynting-Robertson effect on meteor orbits, Astrophys. J. 111, 134–141 (1950).ADSCrossRefGoogle Scholar
  44. Zook, H. A. The state of meteoritic material on the Moon. Proc. Lunar Sci. Conf. 6, 1653–1672 (1975).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • George J. Flynn
    • 1
  1. 1.Department of Physics and Department of MathematicsState University of New York-PlattsburghNYUSA

Personalised recommendations