Spacecraft Measurements of the Cosmic Dust Flux



Spacecraft measurements of the cosmic dust flux in space have determined the flux of meteoroids as a function of meteoroid mass at 1 AU. The measurements show that the total influx rate of meteoritic material to the entire Earth is about 40,000 tons per year, with nearly all of the meteoritic mass residing in grains with masses between 10−16 kg and 10−4 kg. Less than 25% of this mass is believed to derive from asteroids. Data from the Pioneer 8 and 9 spacecraft gave evidence for a flux of sub-micron grains (now called β meteoroids) leaving the solar system under radiation pressure at the rate of about 10 tons per second. A 1.5 × 10−4 m−2s−1 flux of interstellar grains, with a mean mass around 3 X 10−16 kg, has been found to be passing through the solar system by the Ulysses and Galileo spacecraft. These spacecraft have also sensed dust grains in orbit about Jupiter as well as dust escaping the Jovian system.


Dust Cloud Lunar Orbiter Cosmic Dust Radar Meteor Meteoroid Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, W. M. Cosmic dust. Nature 138, 1098–1099 (1962).Google Scholar
  2. Alexander, W. M, McCracken, C. W., and Bohn, J. L. Zodiacal dust: Measurements by Mariner IV Science 149, 1240–1241 (1965).ADSCrossRefGoogle Scholar
  3. Alvarez, J. M. Statistical analysis of meteoroid penetration data including effects of cutoff. NASA TN D-5668(1970).Google Scholar
  4. Baguhl, M., Grün, E., Linkert, G., Linkert D., and Siddique, N. Identification of’ small’ dust impacts in the Ulysses dust detector data. Planet. Space Sci. 41, 1085–1098 (1993).ADSCrossRefGoogle Scholar
  5. Berg, O. E. and Richardson, F. F. The Pioneer 8 cosmic dust experiment. Rev. Sci. lnstr. 40, No. 10, 1333–1337(1969).ADSCrossRefGoogle Scholar
  6. Berg, O. E. and Grün, E. Evidence of hyperbolic cosmic dust particles. Space Res. 13, 1047–1055 (1973).Google Scholar
  7. Bohn, J. L. and Nadig, F. H. Researches in the physical properties of the upper atmosphere with special emphasis on acoustical studies with V-2 rockets. Res. Inst. Temple Univ., Reprint 8, 1–26 (1950).Google Scholar
  8. Burns, J. A., Lamy, P. L., and Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).ADSCrossRefGoogle Scholar
  9. Clifton, K. S. Meteoroid impacts. NASA TMX-53629, 3–7 (1967).Google Scholar
  10. D’Aiutolo, C. T., Kinard, W. H., and Naumann, R. J. Recent NASA meteoroid penetration results from satellites. NASA SP-135, 239–251 (1967).Google Scholar
  11. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. Å S., and Liou, J.-C. A circumsolar ring of aster-oidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994).ADSCrossRefGoogle Scholar
  12. Divine, N. Five populations of interplanetary meteoroids. J. Geophys. Res. 98, 17,029–17,048 (1993).ADSCrossRefGoogle Scholar
  13. Dohnanyi, J. S. Model distribution of photographic meteors. Bellcom Inc. Tech. Rept. No. 66-340-1 (1966).Google Scholar
  14. Dohnanyi, J. S. Interplanetary objects in review: Statistics of their masses and dynamics. Icarus 17, 1–48 (1972).ADSCrossRefGoogle Scholar
  15. Dozier, J. B. V Meteoroid data recorded on Pegasus flights. NASA TN D-3505, 65–76 (1966).Google Scholar
  16. Dubin, M. Meteoritic dust measured from Explorer I. Planet. Space Sci. 2, 121–129 (1960).ADSCrossRefGoogle Scholar
  17. Erickson, J. E. Velocity distribution of sporadic photographic meteors. J. Geophys. Res. 73, 3721–3726 (1968).ADSCrossRefGoogle Scholar
  18. Grew, G. W. and Gurtler, C. A. The Lunar Orbiter meteoroid experiments: Description and results from five spacecraft. NASA TN D-6266 (1971).Google Scholar
  19. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).ADSCrossRefGoogle Scholar
  20. Grün, E., Fechtig, H., Hanner, M. S., Kissel, I, Lindblad, B. A., Linkert, D., Maas, D., Morfill, G. E., and Zook, H. A. The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992a).ADSCrossRefGoogle Scholar
  21. Grün, E., Fechtig, H., Kissel, I, Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G., Zook, H. A., and Giese, R. H. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992b).ADSGoogle Scholar
  22. Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. I, Fechtig, H., Forsyth, R., Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B. A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C, Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362,428–430(1993).ADSCrossRefGoogle Scholar
  23. Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., and Zook, H. A. Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994).ADSGoogle Scholar
  24. Grün, E., Staubach, P., Baguhl, M., Hamilton, D. P., Zook, H. A., Dermott, S., Gustafson, B. A., Fechtig, H., Kissel, I, Linkert, D., Linkert, G., Srama, R., Hanner, M. S., Polanskey, C, Horänyi, M., Lindblad, B. A., Mann, I., McDonnell, J. A. M., Morfill, G. E., and Schwehm, G. South-North and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288 (1997).ADSCrossRefGoogle Scholar
  25. Grün, E., Krüger, H., Graps, A. L., Hamilton, D. P., Heck, A., Linkert, G., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M. Kissel, I, Lindblad, B. A., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C, Schwehm, G., and Srama, R. Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. J. Geophys. Res. 103, 20,011–20,022 (1998).ADSCrossRefGoogle Scholar
  26. Gurtler, C. A. and Grew, G. W. Meteoroid hazard near the Moon. Science 161, 462–464 (1968).ADSCrossRefGoogle Scholar
  27. Hastings, E. C, Jr. The Explorer XVI Micrometeoroid satellite-Description and preliminary results for the period December 16, 1962 through January 13, 1963. NASA TM X-810 (1963a).Google Scholar
  28. Hastings, E. C, Jr. The Explorer XVI micrometeoroid satellite, Supplement I: Preliminary results for the period January 14, 1963 through March 2, 1963. NASA TM X-824 (1963b).Google Scholar
  29. Hastings, E. C, Jr. The Explorer XVI micrometeoroid satellite, Supplement II: Preliminary results for the period March 3, 1963 through May 26, 1963. NASA TM X-89 (1963c).Google Scholar
  30. Hastings, E. C, Jr. The Explorer XVI Micrometeoroid satellite, Supplement III: Preliminary results for the period May 27, 1963 through July 22, 1963. NASA TM X-949 (1964).Google Scholar
  31. Hemenway, C. L., Hallgren, J. F., and Kerridge, J. F. Preliminary micrometeorite results from Gemini IX and XII. NASA SP-150, 147–153 (1967).ADSGoogle Scholar
  32. Hibbs, A. R. The distribution of micrometeorites near the Earth. J. Geophys. Res. 66, No. 2, 371–377 (1961).ADSCrossRefGoogle Scholar
  33. Horanyi, M., Grün E., and Heck, A. Modeling the Galileo dust measurements at Jupiter. Geophys. Res. Lett. 24, 2175–2178 (1997).ADSCrossRefGoogle Scholar
  34. Hörz, F., Cintala, M., Bernhard, R. P., and See, T. H. Dimensionally scaled penetration experiments: Aluminum targets and glass projectiles 50 µrn to 3.2 µm in diameter. Intl. J. Impact Engng. 15, 257–280 (1984).CrossRefGoogle Scholar
  35. Hörz, F., Bernhard, R. P., See, T. H., and Brownlee, D. E. Natural and orbital debris particles on LDEF’s trailing and forward-facing surfaces. NASA CP 3275, Part 1, 415–429 (1993).Google Scholar
  36. Humes, D. H. Small craters on the meteoroid and space debris impact experiment. NASA CP 3275, Part 1, 287–322 (1993).Google Scholar
  37. Jackson, A. A. and Zook, H. A. A solar system dust ring with the Earth as its shepherd. Nature 337, 629–631 (1989).ADSCrossRefGoogle Scholar
  38. Jackson, A. A. and Zook, H. A. Orbital evolution of dust particles from comets and asteroids. Icarus 97, 70–84(1992).ADSCrossRefGoogle Scholar
  39. Johnson, W. G. I. Structural design and data systems of spacecraft. NASA TN D-3505, 4–17 (1966).Google Scholar
  40. Kessler, D. J. Average relative velocity of sporadic meteoroids in interplanetary space. Am. Inst. Aeronautics Astronautics J. 7 (12), 2337–2338 (1969).Google Scholar
  41. Konstantinov, B. P., Bredov, M. M., Mazets, E. P., Panov, V N., Aptekar’, R. L., Golenetskiy, S. V, Gur’yan, Yu.A., and ll’yinskiy, V N. Micrometeoric investigations aboard AES “Kosmos 135”. Goddard Space Flight Center Contract No. NAS-5-12487, ST-IM-10710, May 6, 1968 (See also reference to publica-tions in Russian in McDonnell, 1978) (1968).Google Scholar
  42. Komissarov, O. V, Nazarova, T. N., Neugodov, L. N., Poloskov, S. M., and Rusakov, L. Z. Investigations of micro-meteorites with the aid of rockets and satellites. J. Am. Rocket Soc. 29, 742–744 (1959).Google Scholar
  43. Krüger, H., Krivov, A. V, Hamilton, D. P., and Grün, E. Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999).ADSCrossRefGoogle Scholar
  44. Lagow, H. E. and Alexander, W. M. Recent direct measurements by satellites of cosmic dust in the vicinity of the Earth. NASA TN D-488 (1960).Google Scholar
  45. Landgraf, M., Augustsson, K, Grün, E., and Gustafson, B. Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319–2322 (1999).ADSCrossRefGoogle Scholar
  46. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  47. Mazets, E. P. Cosmic dust and meteor showers. Paper e.25 submitted to the XIII Plenary Meeting of COSPAR (also as Preprint 266 of the Academy of Sciences of the USSR, A. F. Ioffe Phisico-Technical Institute, Leningrad), 15 pp. (1970).Google Scholar
  48. McDonnell, J. A. M. Review of in situ measurements of cosmic dust particles in space. Space Res. 11, 415–435 (1971).Google Scholar
  49. McDonnell, J. A. M. Microparticle studies by space instrumentation. In Cosmic Dust (McDonnell, J. A. M., Ed.), Wiley, New York, 337–426 (1978).Google Scholar
  50. McDonnell, J. A. M., Berg, O. E., and Richardson, F. F. Spatial and time variations of the interplanetary microparticle flux analyzed from deep space probes Pioneer 8 and 9. Planet. Space Sci. 23, 205–214 (1975).ADSCrossRefGoogle Scholar
  51. Naumann, R. J. The near-Earth meteoroid environment. NASA TN D-3717 (1966).Google Scholar
  52. Nilsson, C. Some doubts about the Earth’s dust cloud. Science 153, 1242–1246 (1966).ADSCrossRefGoogle Scholar
  53. Oliver, J. P., Singer, S. F., Weinberg, J. L., Simon, C. G., Cooke, W. J., Kassel, P. C., Kinard, W. H., Mulholland, J. D., and Wortman, J. J. LDEF interplanetary dust experiment (IDE) results. NASA CP 3275, Part 1, 353–360 (1993).Google Scholar
  54. O’Neal, R. L. The Explorer XXIII micrometeoroid satellite—Supplement III, Preliminary results for the period Nov. 6, 1964 through February 15, 1965. NASA TM X-1123 (1965).Google Scholar
  55. O’Neal, R. L. The Explorer XXIII micrometeoroid satellite. NASA TN D-4284 (1968).Google Scholar
  56. Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W, and Spiesman, W. J. Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature 374, 521–523 (1995).ADSCrossRefGoogle Scholar
  57. Rhee, J. W, Berg, O. E., and Richardson, F. F. Heliocentric distribution of cosmic dust intercepted by Pioneer 8 and 9. Geophys. Res. Lett. 1, No. 8, 345–346 (1974).ADSCrossRefGoogle Scholar
  58. Smith, M. J., III. Meteoroid detector development and testing. NASA TN D-3505, 29–54 (1966).Google Scholar
  59. Whipple, F. L. Particulate contents of space. In Medical and biological aspects of the energies of space (Campell, P. H., Ed.), Columbia Univ. Press, New York, 49–70 (1961a).Google Scholar
  60. Whipple, F. L. The dust cloud about the Earth. Nature 189, 127–128 (1961b).ADSCrossRefGoogle Scholar
  61. Whipple, F. L. On maintaining the meteoritic complex. NASA SP-150, 409–426 (1967).ADSGoogle Scholar
  62. Whipple, F. L. Sources of interplanetary dust. In Interplanetary dust and zodiacal light (Elsässer, H. and Fechtig, H., Eds.), Springer, New York, 403–415 (1976).Google Scholar
  63. Zhang, J. and Kessler, D. J. Orbital debris and meteoroid population as estimated from LDEF impact data. NASA CP 3275, Part 1, 373–384 (1993).Google Scholar
  64. Zook, H. A. Hyperbolic cosmic dust: Its origin and its astrophysical significance. Planet. Space Sci. 23, 1391–1397 (1975a).ADSCrossRefGoogle Scholar
  65. Zook, H. A. The state of meteoritic material on the moon. Proc. Lunar Sci. Conf. 4, 1653–1672 (1975b).ADSGoogle Scholar
  66. Zook, H. A. Temporal and spatial variations of the interplanetary dust flux. Space Res. 18,411–422 (1978).Google Scholar
  67. Zook, H. A. Deriving the velocity distribution of meteoroids from the measured meteoroid impact directionality on the various LDEF surfaces. NASA CP 3134, Part 1, 569–579 (1991).Google Scholar
  68. Zook, H. A. and Berg, O. E. A source for hyperbolic cosmic dust particles. Planet. Space Sci. 23, 183–203 (1975).ADSCrossRefGoogle Scholar
  69. Zook, H. A., Flaherty, R. E., and Kessler, D. J. Meteoroid impacts on the Gemini windows. Planet. Space Sci. 18, 953–964 (1970).ADSCrossRefGoogle Scholar
  70. Zook, H. A., Grün, E., Baguhl, M., Hamilton, D. P., Linkert, G., Linkert, D., Liou, J.-C, Forsyth, R., and Phillips, J. L. Solar wind magnetic field bending of Jovian dust trajectories. Science 274, 1501–1503 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.NASA Johnson Space CenterHoustonUSA

Personalised recommendations