Advertisement

Abstract

The Earth has been bombarded by comets and their debris throughout geological time. Rare giant comets are the most massive bodies to enter the inner planetary system and they are major contributors to the mass budget of the zodiacal cloud, generating large surges of cometary dust onto the Earth. Climatic effects, including severe declines in biodiversity, are then expected, and mass extinctions of life may be caused as much by the trauma of prolonged climatic downturn as by the prompt effects of impact. Cometary debris which may have induced the last ice age, and possibly the progenitor comet itself, are identifiable in the contemporary interplanetary environment.

Keywords

Meteor Shower Oort Cloud Cometary Dust Active Comet Zodiacal Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L. W. Experimental evidence that an asteroid led to the extinction of many species 65 million years ago. Proc. Nat. Acad. Sci. (USA) 80, 627–642 (1983).ADSCrossRefGoogle Scholar
  2. Asher, D. J. and Steel, D. I. Orbital evolution of the larger outer solar system object 5145 Pholus. Mon. Not. R. Astron. Soc. 263, 179–190 (1993).ADSGoogle Scholar
  3. Asher, D. J. and Clube, S. V M. Towards a dynamical history of ‘Proto-Encke.’ Cel. Mech. Dyn. Astron. 69, 149–170(1998).ADSzbMATHCrossRefGoogle Scholar
  4. Asher, D. J. and Izumi, K. Meteor observations in Japan: New implications for a Taurid meteoroid swarm. Mon. Not. R. Astron. Soc. 297, 23–27 (1998).ADSCrossRefGoogle Scholar
  5. Asher, D. J., Clube, S. V M., Napier, W. M., and Steel, D. I. Coherent catastrophism. Vistas Astron. 38, 1–27 (1994).ADSCrossRefGoogle Scholar
  6. Asher, D. J., Bailey, M. E., and Steel, D. I. The role of non-gravitational forces in decoupling orbits from Jupiter. In Collisional processes in the solar system (Marov, M. and Rickman, H., Eds.), Kluwer, Dordrecht, in press (2001).Google Scholar
  7. Bailey, M. E., Clube, S. V M, Hahn, G., Napier, W. M., and Valsecchi, G. B. Hazards due to giant comets: Climate and short-term catastrophism. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona, Tucson, 479–533 (1994).Google Scholar
  8. Babadzhanov, P. B. Meteor showers associated with the Taurid complex asteroids. Cel. Mech. Dyn. Astron. 69,221–234(1998).ADSCrossRefGoogle Scholar
  9. Clube, S. V M. and Napier, W. M. The microstructure of terrestrial catastrophism. Mon. Not. R. Astron. Soc. 211, 953–968(1984).ADSGoogle Scholar
  10. Clube, S. V M. and Napier, W. M. Giant comets and the Galaxy: Implications of the terrestrial record. In The Galaxy and the solar system (Smoluchowski, R., Bahcall, J. N., and Matthews, M. S., Eds.), Univ. Arizona, Tucson, 260–285 (1986).Google Scholar
  11. Clube, S. V M., Hoyle, F., Napier, W. M., and Wickramasinghe, N. C. Giant comets, evolution and civilization. Astrophys. Space Sci. 245, 43–60 (1996).ADSCrossRefGoogle Scholar
  12. Cruikshank, D. P., Roush, T. L., Bartholomew, M. J., and 12 others. The composition of Centaur 5145 Pholus. Icarus 135, 389–107 (1998).ADSCrossRefGoogle Scholar
  13. Desvoivres, E., Klinger, I, Levasseur-Regourd, A. C, and Jones, G. H. Modeling the dynamics of cometary fragments: Application to Comet C/1996 B2 Hyakutake. Icarus 144, 172–181 (2000).ADSCrossRefGoogle Scholar
  14. Edgeworth, K. E. J. Brit. Astron. Assoc. 53, 181–188 (1943).ADSGoogle Scholar
  15. Edgeworth, K. E. The origin and evolution of the solar system. Mon. Not. R. Astron. Soc. 109, 600–609 (1949).ADSGoogle Scholar
  16. Emel’yanenko, V V and Bailey, M. E. Capture of Halley-type comets from the near-parabolic flux. Mon. Not. R. Astron. Soc. 298, 212–222 (1998).ADSCrossRefGoogle Scholar
  17. Fernandez, J. A. and Ip, W.-H. Statistical and evolutionary aspects of comet orbits. In Comets in the post-Halley era (Newburn, R. L. et al., Eds.), Kluwer, Dordrecht, 487–535 (1991).CrossRefGoogle Scholar
  18. Fox, K.., Williams, I. P., and Hughes, D. W. The ‘Geminid’ asteroid (1983TB) and its orbital evolution. Mon. Not. R. Astron. Soc. 208, 11P–15P (1984).ADSGoogle Scholar
  19. Froeschlé, C. and Scholl, H. Numerical investigations on a possible gravitational breaking of the Quadrantid meteor stream. In Asteroids, comets, meteors II (Lagerkvist, C.-I. et al., Eds.), Uppsala Univ., 555–558 (1986).Google Scholar
  20. Fülle, M. Meteoroids from short period comets. Astron. Astrophys. 230, 220–226 (1990).ADSGoogle Scholar
  21. Fülle, M. Dust from short-period comet P/Schwassmann-Wachmann 1 and replenishment of the interplanetary dust cloud. Nature 359, 42–44 (1992).ADSCrossRefGoogle Scholar
  22. Ganapathy, R. The Tunguska explosion of 1908: Discovery of meteoritic debris near the explosion site and at the South Pole. Science 220, 1158–1161 (1983).ADSCrossRefGoogle Scholar
  23. Gladman, B., Migliorini, F., Morbidelli, A., Zappalà, V, Michel, P., Cellino, A., Froeschlé, C, Levison, M. F, Bailey, M., and Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).ADSCrossRefGoogle Scholar
  24. Goldstein, R. M., Jürgens, R. F., and Sekanina, Z. A radar study of Comet IRAS-Araki-Alcock 1983d. Astron. J. 89, 1745–1754 (1984).ADSCrossRefGoogle Scholar
  25. Gradie, J. C, Chapman, C. R., and Tedesco, E. F. Distribution of taxonomic classes and the compositional structure of the asteroid belt. In Asteroids II (Binzel, R. P., Gehrels, T, and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 316–335 (1989).Google Scholar
  26. Grady, M. M., Hutchison, R., McCall, G. J. H., and Rothery, D. A. Meteorites: Flux with time and impact effects, Geol. Soc. Lond, Spec. Publ. 140, 278 pp. (1998).Google Scholar
  27. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62,244–272(1986).ADSCrossRefGoogle Scholar
  28. Gunn, J. D. (Ed.) The years without a summer: Tracing A. D. 536 and its aftermath, Brit. Arch. Rept. Intern. Ser. No. 872, 170 pp. (2000).Google Scholar
  29. Hahn, G. and Bailey, M. E. Rapid dynamical evolution of giant comet Chiron. Nature 348, 132–136 (1990).ADSCrossRefGoogle Scholar
  30. Harmon, J. K., Ostro, S. X, Benner, L. A. M., and 13 others. Radar detection of the nucleus and coma of Comet Hyakutake (C/1996 B2). Science 278, 1921–1924 (1997).ADSCrossRefGoogle Scholar
  31. Harris, N. W. and Bailey, M. E. Dynamical evolution of cometary asteroids. Mon. Not. R. Astron. Soc. 297, 1227–1236 (1998).ADSCrossRefGoogle Scholar
  32. Helin, E. F. and Shoemaker, E. M. Palomar planet-crossing asteroid survey, 1973-1978. Icarus 40, 321–328 (1979).ADSCrossRefGoogle Scholar
  33. Hoyle, F. On the causes of ice ages. Earth, Moon, Planets 31, 229–248 (1984).ADSCrossRefGoogle Scholar
  34. Hoyle, F. and Wickramasinghe, C. N. Comets, ice ages, and ecological catastrophes. Astrophys. Space Sci. 53, 523–526 (1978).ADSCrossRefGoogle Scholar
  35. Hughes, D. W. The world’s most famous meteor shower picture. Earth, Moon, Planets 68, 311–322 (1995).Google Scholar
  36. Hughes, D. W. and Daniels, P. A. Temporal variations in the cometary mass distribution. Mon. Not. R. Astron. Soc. 198, 573–582 (1982).ADSGoogle Scholar
  37. Jeffers, S. V Collisional processes in the inner solar system, M. Phil, thesis. Queen’s Univ. Belfast, 56 pp. (2000).Google Scholar
  38. Kortenkamp, S. J. and Dermott, S. FA 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280, 874–876 (1998).ADSCrossRefGoogle Scholar
  39. Kresák, L. Evolutionary aspects of the splits of comet nuclei. Bull. Astron. lnst. Czech. 32, 19–40 (1981).ADSGoogle Scholar
  40. Kresák, L. Cometary dust trails and meteor storms. Astron. Astrophys. 119, 646–660 (1993).ADSGoogle Scholar
  41. Kresák, L. and Kresákova, M. The absolute magnitudes of periodic comets, I and II. Bull. Astron. lnst. Czech. 40, 269–284 (1989).ADSGoogle Scholar
  42. Kuiper, G. P. On the origin of the solar system. In Astrophysics (Hynek, J. A., Ed.), McGraw-Hill, New York, 357–234(1951).Google Scholar
  43. Love, S. G. and Brownlee, D. E. A direct measurement of the mass accretion rate of cosmic dust. Science 262,550–553(1993).ADSCrossRefGoogle Scholar
  44. Lowry, S. C, Fitzsimmons, A., Cartwright, I. M., and Williams, I. P. Photometry of distant comets. Astron. Astrophys. 349, 649–659 (1999).ADSGoogle Scholar
  45. McBride, N., Taylor, A. D., Green, S. E, and McDonnell, J. A. M. Asymmetries in the natural meteoroid population as sampled by LDEF. Planet. Space Sci. 43, 757–764 (1995).ADSCrossRefGoogle Scholar
  46. McDonnell, J. A. M., Alexander, W. M., Burton, W. M., and 25 others. Dust density and mass distribution near comet Halley from Giotto observations. Nature 321, 338–341 (1986).ADSCrossRefGoogle Scholar
  47. McGhee, G. R. The Late Devonian mass extinction, Columbia Univ. Press, New York, 165 pp. (1996).Google Scholar
  48. Manley, S. P., Migliorini, F., and Bailey, M. E. An algorithm for determining collision probabilities between small solar system bodies. Astron. Astrophys. Suppl. Ser. 133, 437–444 (1998).ADSCrossRefGoogle Scholar
  49. Matsuura, S., Matsumoto, T., Matsuhara, H., and Noda, M. Rocket-borne observations of the zodiacal light in the near-infrared wavelengths. Icarus 115, 199–208 (1995).ADSCrossRefGoogle Scholar
  50. Menichella, M., Paolicchi, P., and Farinella, P. The main belt as a source of near-Earth asteroids. Earth, Moon, Planets 72, 133 (1996).ADSCrossRefGoogle Scholar
  51. Michel, P., Froeschlé, C, and Farinella, P. Dynamical evolution of two near-Earth asteroids to be explored by spacecraft: (433) Eros and (4660) Nereus. Astron. Astrophys. 313, 993–1007 (1996).ADSGoogle Scholar
  52. Migliorini, F., Michel, P., Morbidelli, A., Nesvorný, D., and Zappalà, V Origin of multikilometer Earth-and Mars-crossing asteroids: A quantitative simulation. Science 281, 2022–2024 (1998).ADSCrossRefGoogle Scholar
  53. Napier, W. M. Earth-crossing asteroid groups. In Meteoroids and their parent bodies (Štohl, I and Williams, I. P., Eds.), Astron. lnst. Slovak Acad. Sci., Bratislava, 123–126 (1993).Google Scholar
  54. Napier, W. M. Temporal variation of the zodiacal dust cloud. Mon. Not. R. Astron. Soc. 321, 463–470 (2001).ADSCrossRefGoogle Scholar
  55. Napier, W. M. and Clube, S. V M. A theory of terrestrial catastrophism. Nature 282, 455–459 (1979).ADSCrossRefGoogle Scholar
  56. Olsson-Steel, D. I. Identification of meteoroid streams from Apollo asteroids in the Adelaide radar orbit surveys. Icarus 75, 64–96 (1988).ADSCrossRefGoogle Scholar
  57. Oort, J. H. The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bull. Astron. lnst. Neth. 11,91–110 (1950).ADSGoogle Scholar
  58. Shoemaker, E. M., Weissman, P. P., and Shoemaker, C. S. The flux of periodic comets near Earth. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 313–335 (1994).Google Scholar
  59. Steel, D. I. and Asher, D. J. On the origin of comet Encke. Mon. Not. R. Astron. Soc. 28, 937–944 (1996).ADSGoogle Scholar
  60. Stohl, J. On the distribution of sporadic meteor orbits. In Asteroids, comets, meteors (Lagerkvist, C.-I. and Rickman, H., Eds.), Uppsala Univ., 419–424 (1983).Google Scholar
  61. Sykes, M. V. and Walker, R. G. Cometary dust trails. I. Survey. Icarus 95, 180–210(1992).ADSCrossRefGoogle Scholar
  62. Tanaka, H., Inaba, S., and Nakazawa, K. Steady-state size distribution for the self-similar cascade. Icarus 123, 450–455 (1996).ADSCrossRefGoogle Scholar
  63. Valsecchi, G. B. From Jupiter family comets to objects in Encke-like orbit. Proc. IAU Colloq. 173, Evolution and source regions of asteroids and comets, Proc. IAU Colloq. 173 (Newburn, R. L., Neugebauer, M., and Rahe, I, Eds.), Kluwer, Dordrecht, 353 (1999).Google Scholar
  64. Valsecchi, G. B., Morbidelli, A., Gonczi, R., Farinella, P., and Froeschle, C. The dynamics of objects in orbits resembling that of P/Encke. Icarus 118, 169–180 (1995).ADSCrossRefGoogle Scholar
  65. Whipple, F. L. A comet model. II. Physical relations for comets and meteors. Astrophys. J. 113, 464–474 (1951).ADSCrossRefGoogle Scholar
  66. Whipple, F. L. On maintaining the meteoritic complex. NASA SP-150, 409–426 (1967). Yabushita, S. and Henrard, J. (Eds.) Dynamics of comets and asteroids and their role in Earth history, Kluwer, Dordrecht, 291 pp. (1998).Google Scholar
  67. Zappalà, V, Cellino, A., Di Martino, M., Migliorini, F, and Paolicchi, P. Maria’s family: Physical structure and implications for the origin of giant NEAs. Icarus 129, 1–20 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • William M. Napier
    • 1
  1. 1.Armagh ObservatoryArmaghNorthern Ireland, UK

Personalised recommendations