Advertisement

Delivery of Material from the Asteroid Belt

  • Paolo Farinella
  • David Vokrouhlický
  • Alessandro Morbidelli
Chapter

Abstract

The delivery of bodies from the main asteroid belt to Earth-crossing orbits requires a complex scenario that involves disruptive asteroidal collisions as well as gravitational and non-gravitational dynamical transport processes. We review the recent developments in this field that have lead to substantial modifications of the scenario envisaged until the early 1990s. We avoid discussion of still poorly understood primordial delivery of material onto the Earth before the “Late Heavy Bombardment” period and focus on the transport mechanism at later stages of the solar system evolution. It now appears that the delivery process is not the same for meter-sized meteorites and kilometer-sized near-Earth asteroids, and that a variety of resonant effects play a significant role on different time scales. Although it seems likely that the main asteroid belt can supply the vast majority of the macroscopic bodies hitting the Earth, a quantitative model of this process requires further progress in both the theoretical and the observational areas.

Keywords

Ordinary Chondrite Asteroid Belt Main Belt Main Asteroid Belt Secular Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, G. B., Gomes, R. S., and Florczak, M. A. Asteroid fragments in Earth-crossing orbits. Planet. Space Sci. 43, 787–795 (1995).ADSCrossRefGoogle Scholar
  2. Arnold, J. R. The origin of meteorites as small bodies: II. The model, Astrophys. J. 141, 1545–1547 (1965).ADSGoogle Scholar
  3. Asphaug, E. Impact origin of the Vesta family. Meteor. Planet. Sci. 32, 965–980 (1997).ADSCrossRefGoogle Scholar
  4. Barnouin-Jha, O. S. and Cheng, A. F. Expected crater distributions on asteroid 433 Eros. Lunar Planet. Sci. 31, 1255 (2000).ADSGoogle Scholar
  5. Bottke, W. F., Jedicke, R., Morbidelli, A., Gladman, B., and Petit, J. M. Understanding the distribution of near-Earth asteroids. Bull. Am. Astron. Soc. 31, 1116 (1999).ADSGoogle Scholar
  6. Bottke, W. F., Rubincam, D. P., and Burns, J. A. Dynamical evolution of main belt meteoroids: Numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus 145, 301–331 (2000).ADSCrossRefGoogle Scholar
  7. Burns, J. A., Lamy, P. L., and Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).ADSCrossRefGoogle Scholar
  8. Caffee, M. W., Goswami, J. N., Hohenberg, C. M, Marti, K., and Reedy, R. C. Irradiation records in meteorites. In Meteorites and the early solar system (Kerridge, J. F. and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 205 (1988).Google Scholar
  9. Cellino, A., Michel, P., Tanga, P., Zappalà, V, Paolicchi, P., and Dell’Oro, A. The velocity-size relationship for members of asteroid families and implications for the physics of catastrophic collisions. Icarus 141, 79–95 (1999).ADSCrossRefGoogle Scholar
  10. Ceplecha, Z. Influx of interplanetary bodies onto Earth. Astron. Astrophys. 263, 361–366 (1992).ADSGoogle Scholar
  11. Ceplecha, Z. Impacts of meteoroids larger than 1 m into the Earth’s atmosphere. Astron. Astrophys. 286, 967–970 (1994).ADSGoogle Scholar
  12. Davis, D. R, Weidenschilling, S. J., Farinella, P., Paolicchi, P., and Binzel, R. P. Asteroid collisional history: Effects on sizes and spins. In Asteroids II (Binzel, R. P., Gehrels, T., and Matthews, M. S., Eds.) Univ. Arizona Press, Tucson, 805–826 (1989).Google Scholar
  13. Farinella, P. and Vokrouhlicky, D. Semimajor axis mobility of asteroidal fragments. Science 283, 1507–1510(1999).ADSCrossRefGoogle Scholar
  14. Farinella, P., Gonczi, R., Froeschlé, Ch., and Froeschlé, C. The injection of asteroid fragments into resonances. Icarus 101, 174–187 (1993).ADSCrossRefGoogle Scholar
  15. Farinella, P., Froeschlé, Ch., Froeschlé, C, Gonczi, R., Hahn, G., Morbidelli, A., and Valsecchi, G. B. Asteroids falling onto the Sun. Nature 371, 314–315 (1994).ADSCrossRefGoogle Scholar
  16. Farinella, P., Vokrouhlický, D., and Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).ADSCrossRefGoogle Scholar
  17. Froeschlé, Ch. and Morbidelli, A. The secular resonances in the solar system. In Asteroids, comets, meteors 1993 (Milani, A., Di Martino, M., and Cellino, A., Eds.), Kluwer, Dordrecht, 189–204 (1994).CrossRefGoogle Scholar
  18. Gladman, B. I, Migliorini, F., Morbidelli, A., Zappalà, V, Michel, P., Cellino, A., Froeschlé, Ch., Levison, H. F., Bailey, M., and Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).ADSCrossRefGoogle Scholar
  19. Gladman, B. J., Michel, P., and Froeschlé, Ch. The near-Earth asteroid population. Icarus 146, 176–189 (2000).ADSCrossRefGoogle Scholar
  20. Gradie, J. C, Chapman, C. R., and Tedesco, E. F. Distribution of taxonomic classes and the compositional structure of the asteroid belt. In Asteroids II (Binzel, R. P., Gehrels, T, and Matthews, M. S., Eds.). Univ. Arizona Press, Tucson, 316–335 (1989).Google Scholar
  21. Graf, T. and Marti, K. Collisional history of H chondrites J. Geophys. Res. 100, 21,247–21,263 (1995).ADSCrossRefGoogle Scholar
  22. Greenberg, R. and Nolan, M. C. Delivery of asteroids and meteorites to the inner solar system. In Asteroids II (Binzel, R. P., Gehrels, T, and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 778–826 (1989).Google Scholar
  23. Hartmann, W. K., Farinella, P., Vokrouhlický, D., Weidenschilling, S. X, Morbidelli, A., Marzari, F., Davis, D. R., and Ryan, E. Reviewing the Yarkovsky effect: New light on the delivery of stone and iron meteorites from the asteroid belt. Meteor. Planet. Sci. 34, A161–A168 (1999).ADSCrossRefGoogle Scholar
  24. Levison, H. and Duncan, M. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).ADSCrossRefGoogle Scholar
  25. Marti, K. and Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992).ADSCrossRefGoogle Scholar
  26. Meninchella, M., Paolicchi, P., and Farinella, P. The main belt as a source of the near-Earth asterois. Earth, Moon, Planets 72, 133–149 (1996).ADSCrossRefGoogle Scholar
  27. Michel, P. Effects of linear secular resonances in the region of semimajor axes smaller than 2 AU. Icarus 129, 348–366(1997).ADSCrossRefGoogle Scholar
  28. Michel, P., Farinella, P., and Froeschlé, Ch. Dynamics of Eros. Astron. J. 116, 2023–2031 (1998).ADSCrossRefGoogle Scholar
  29. Michel, P., Gonczi, R., Farinella, P., and Froeschlé, Ch. Dynamical evolution of 1036 Ganymed, the largest near-Earth asteroid. Astron. Astrophys. 347, 711–719 (1999).ADSGoogle Scholar
  30. Michel, P., Migliorini, E, Morbidelli, A., and Zappalà, V The population of Mars-crossers: Classification and dynamical evolution. Icarus 145, 332–347 (2000).ADSCrossRefGoogle Scholar
  31. Migliorini, F., Michel, P., Morbidelli, A., Nesvorný, D, and Zappalà, V Origin of multikilometer Earth-and Mars-crossing asteroids: A quantitative simulation. Science 281, 2022–2024 (1998).ADSCrossRefGoogle Scholar
  32. Moons, M. Review of the dynamics in the Kirkwood gaps. In The dynamical behavior of our planetary system (Dvorak, R. and Henrard, J, Eds.), Kluwer, Dordrecht, 175 (1997).Google Scholar
  33. Moons, M. and Morbidelli, A. Secular resonances inside mean-motion commensurabilities: The 4/1, 3/1, 5/2 and 7/3 cases. Icarus 114, 33–50 (1995).ADSCrossRefGoogle Scholar
  34. Morbidelli, A. Asteroid secular resonant proper elements. Icarus 105, 48–66 (1993).ADSCrossRefGoogle Scholar
  35. Morbidelli, A. Chaotic diffusion and the origin of comets from the 2/3 resonance in the Kuiper belt. Icarus 127, 1–12(1997).ADSCrossRefGoogle Scholar
  36. Morbidelli, A. and Gladman, B. J. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteor. Planet. Sci. 33, 999–1016 (1998).ADSCrossRefGoogle Scholar
  37. Morbidelli, A. and Nesvorný, D. Numerous weak resonances drive asteroids toward terrestrial planets orbits. Icarus 139, 295–308 (1999).ADSCrossRefGoogle Scholar
  38. Morbidelli, A., Gonczi, R., Froeschlé, Ch., and Farinella, P. Delivery of meteorites through the v6 secular resonance. Astron. Astrophys. 282, 955–979 (1994).ADSGoogle Scholar
  39. Morbidelli, A., Zappalà, V, Moons, M., Cellino, A., and Gonczi, R. Asteroid families close to mean motion resonances: Dynamical effects and physical implications. Icarus 118, 132–154 (1995).ADSCrossRefGoogle Scholar
  40. Öpik, E. J. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Irish Acad. 54, 165–199 (1951).zbMATHGoogle Scholar
  41. Peterson, C. A source mechanism for meteorites controlled by the Yarkovsky effect. Icarus 29, 91–111 (1976).ADSCrossRefGoogle Scholar
  42. Petit, J. M. and Farinella, P. Modeling the outcomes of high-velocity impacts between small solar system bodies. Celest. Mech. 57, 1–28 (1993).ADSzbMATHCrossRefGoogle Scholar
  43. Rabinowitz, D. L. The size distribution of the Earth-approaching asteroids. Astrophys. J. 407, 412–427 (1993).ADSCrossRefGoogle Scholar
  44. Rabinowitz, D. L. The size and shape of the near-Earth asteroid belt. Icarus 111, 364–377 (1994).ADSCrossRefGoogle Scholar
  45. Rabinowitz, D. L., Gehrels, T., Scotti, J. V, McMillan, R. S., Perry, M. L., Wisniewski, W., Larson, S. M., Howell, E. S., and Mueller, B. E. A. Evidence for a near-Earth asteroid belt. Nature 363, 704–706 (1993).ADSCrossRefGoogle Scholar
  46. Radzievskii, VV A mechanism for the disintegration of asteroids and meteorites. Astron. Zh. 29, 162–170 (1952).ADSGoogle Scholar
  47. ReVelle, D. O. Historical detection of atmospheric impacts by large bodies using acoustic-gravity waves. Annu. N. Y. Acad. Sci. 822 (Near Earth Objects), 284–302 (1997).ADSCrossRefGoogle Scholar
  48. Rubincam, D. P. Asteroid orbit evolution due to thermal drag.J. Geophys. Res. 100, 1585–1594 (1995).ADSCrossRefGoogle Scholar
  49. Rubincam, D. P. Yarkovsky thermal drag on small asteroids and Mars-Earth delivery. J. Geophys. Res. 103, 1725–1732(1998).ADSCrossRefGoogle Scholar
  50. Tagliaferri, E., Spalding, R., Jacobs, C, Worden, S. P., and Erlich, A. Detection of meteoroid impacts by optical sensor in Earth orbit. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 199 (1994).Google Scholar
  51. Veverka, J., Robinson, M., Thomas, P., Murchie, S., Bell, J. F, III, Izenberg, N., Chapman, C, Harch, A., Bell, M., Carcich, B., Cheng, A., Clark, B., Domingue, D., Dunham, D., Farquhar, R., Gaffey, M. J., Hawkins, E., Joseph, J., Kirk, R., Li, H., Lucey, P., Malin, M., Martin, P., McFadden, L., Merline, W. J., Miller, J. K., Owen, W. M., Jr., Peterson, C, Prockter, L., Warren, J., Wellnitz, D., Williams, B. G., and Yoemans, D. K. NEAR at Eros: Imaging and spectral results. Science 289, 2088–2097 (2000).ADSCrossRefGoogle Scholar
  52. Vokrouhlicky, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments: I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).ADSGoogle Scholar
  53. Vokrouhlický, D. A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344, 362–366 (1999).ADSGoogle Scholar
  54. Vokrouhlický, D. and Farinella, P. Orbital evolution of asteroidal fragments into the v6 resonance via Yarkovsky effects. Astron. Astrophys. 335, 351–362 (1998).ADSGoogle Scholar
  55. Vokrouhlický, D. and Farinella, P. Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 400, 606–608 (2000).ADSCrossRefGoogle Scholar
  56. Vokrouhlický, D., Broz, M., Farinella, P., and Knezevic, Z. Yarkovsky-driven leakage of Koronis family members and the case of 2953 Vysheslavia. Bull. Am. Astron. Soc. 31, 1111 (1999).ADSGoogle Scholar
  57. Vokrouhlický, D., Brož, M., Farinella, P., and Knezević, Z. Yarkovsky-driven leakage of Koronis family members: I. The case of 2953 Vysheslavia. Icarus, in press (2000).Google Scholar
  58. Welten, K. C, Lindner, L., van der Borg, K., Loeken, T., Scherer, P., and Schultz, L. Cosmic-ray exposure ages of diogenties and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. Meteor. Planet. Sci. 32, 891–902 (1997).ADSCrossRefGoogle Scholar
  59. Wetherill, G. W. Steady state populations of Apollo-Amor objects. Icarus 37, 96–112 (1979).ADSCrossRefGoogle Scholar
  60. Wetherill, G. W. Asteroidal source of ordinary chondrites. Meteoritics 20, 1–22 (1985).ADSGoogle Scholar
  61. Wetherill, G. W. Dynamical relations between asteroids, meteorites and Apollo-Amor objects. Phil. Trans. R. Soc. Lond. A323, 323–337 (1987).ADSCrossRefGoogle Scholar
  62. Wetherill, G. W. Where do the Apollo objects come from? Icarus 76, 1–18 (1988).ADSCrossRefGoogle Scholar
  63. Williams, J. G. Secular perturbation in the solar system, Ph.D. thesis, Univ. California, Los Angeles (1969).Google Scholar
  64. Williams, J. G. and Faulkner, X The positions of secular resonance surfaces. Icarus 46, 390–399 (1981).ADSCrossRefGoogle Scholar
  65. Wisdom, J. Chaotic behavior and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983).ADSCrossRefGoogle Scholar
  66. Wisdom, J. Meteorites may follow a chaotic route to Earth. Nature 315, 731–733 (1985).ADSCrossRefGoogle Scholar
  67. Zappalà, V, Bendjoya, P., Cellino, A., Farinella, P, and Froeschlé, C. Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291–314 (1995).ADSCrossRefGoogle Scholar
  68. Zappalà, V, Cellino, A., Dell’Oro, A., Migliorini, F., and Paolicchi, P. Reconstructing the original ejection velocity fields of asteroid families. Icarus 124, 156–180 (1996).ADSCrossRefGoogle Scholar
  69. Zappalà, V, Cellino, A., Di Martino, M., Migliorini, F., and Paolicchi, P. Maria’s family: Physical structure and possible implications for the origin of giant NEAs. Icarus 129, 1–20 (1997).ADSCrossRefGoogle Scholar
  70. Zappalà, V, Cellino, A., Gladman, B. X, Manley, S., and Migliorini, F. Asteroid showers on earth after fam-ily breakup events. Icarus 134, 176–179 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Paolo Farinella
    • 1
  • David Vokrouhlický
    • 2
  • Alessandro Morbidelli
    • 3
  1. 1.Department of AstronomyUniversity of TriesteItaly
  2. 2.Institute of AstronomyCharles UniversityPragueCzech Republic
  3. 3.Observatoire de la Côte d’AzurNiceFrance

Personalised recommendations