Advertisement

Accretion to Earth and Moon ∼3.85 Ga

  • Stephen J. Mojzsis
  • Graham Ryder

Abstract

The lunar record provides a means of estimating post-accretionary impact influences on the early Earth and a comparison with what we can more directly infer from the Earth’s own rocks. In the period from about 3.9 to about 3.8 Ga there was considerable impacting on the Moon with evidence for concurrent marine sedimentation on Earth. This was a time interval in which the impactor flux to the lunar surface was orders of magnitude greater than the present rate; massive impacts as well as an enhanced background flux of extraterrestrial matter should have likewise affected the surface of early Earth. As yet, no unequivocal evidence for a “Late Heavy Bombard- ment of the Earth” has been established from direct measurement of terrestrial crustal rocks. The lack of a signal of the bombardment on Earth may be due to the fact that: (i) the oldest sediments do not overlap with the bombardment era, (ii) the bombard- ment was less intense than previously thought, (iii) sedimentation was extremely rapid so as to dilute any extraterrestrial signal, (iv) sample volumes yet analyzed under- sample extra-terrestrial input, or (v) windows for sampling elevated fluxes of extrater- restrial bodies were very short between long periods of relative calm. Further exten- sive studies of the oldest known sediments will be needed to resolve the issues raised in this paper.

Keywords

Detrital Zircon Platinum Group Element Banded Iron Formation Lunar Planet Magma Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993).ADSCrossRefGoogle Scholar
  2. Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  3. Amelin, Y., Lee, D.-C, Halliday, A. N., and Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999).ADSCrossRefGoogle Scholar
  4. Anbar, A. D., Wasserburg, G. J., Papanastassiou, D., and Anderson, P. Iridium in natural waters. Science 273, 1524–1528(1996).ADSCrossRefGoogle Scholar
  5. Anbar, A. D., Arnold, G. L., Mojzsis, S. J., and Zahnle, K. J. Extraterrestrial iridium and sediment accu-mulation on the Hadean Earth. J. Geophys. Res.-Planets 106 (2), 3219–3236 (2000).ADSCrossRefGoogle Scholar
  6. Anders, E. and Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).ADSCrossRefGoogle Scholar
  7. Baldwin, R. B. Was there a “Terminal Lunar Cataclysm” 3.9−4.0 × 109 years ago? Icarus 23, 157–166 (1974).ADSCrossRefGoogle Scholar
  8. Baldwin, R. B. On the relative and absolute ages of seven lunar front face basins. II. From crater counts. Icarus 71, 19–29(1987).ADSCrossRefGoogle Scholar
  9. Barker, J. L. and Anders, E. Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments. Geochim. Cosmochim. Acta 32, 627–645 (1968).ADSCrossRefGoogle Scholar
  10. Bau, M. and Möller, P. Rare earth element systematics of the chemically precipitated component in early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim. Cosmochim. Acta 57, 2239–2249 (1993).ADSCrossRefGoogle Scholar
  11. Bogard, D. D., Garrison, D. H., and Lindstrom, M. M. 39Ar/40Ar age of an Apollo 15, KREEP-poor, impact melt rock. Lunar Planet. Sci. 22, 117–118 (1991).ADSGoogle Scholar
  12. Bowring, S. A., Williams, I. S., and Compston, W. 3.96 Ga gneisses from the Slave Province, Northwest Territories, Canada. Geology 17, 760–764 (1989).ADSCrossRefGoogle Scholar
  13. Bowring, S. A., Housh, T. B., and Isachsen, C. E. The Acasta gneisses: Remnant of Earth’s early crust. In Origin of the Earth (Newsom H. E. and Jones, J. H., Eds.), Oxford Univ. Press, Oxford, 319–343 (1990).Google Scholar
  14. Bowring, S. A. and Housh, T. The Earth’s early evolution. Science 269, 1535–1540 (1995).ADSCrossRefGoogle Scholar
  15. Canup, R. M. and Agnor, C. B. Accretion of the terrestrial planets and the Earth-Moon system. In Origin of Earth and Moon (Canup, R. and Righter, K., Eds.), Univ. Arizona Press, Tucson, 113–129 (2000).Google Scholar
  16. Carlson, R. W. and Lugmair, G. W. Sm-Nd constraints on early lunar differentiation and the evolution of KREEP. Earth Planet. Sci. Lett. 45, 123–132 (1979).ADSCrossRefGoogle Scholar
  17. Cherniak, D. J. Diffusion of Pb in feldspar measured by Rutherford backscattering spectroscopy. Eos, Trans. AGU 73, 641 (1992).Google Scholar
  18. Chou, C.-L. Fractionation of the siderophile elments in the Earth’s upper mantle. Proc. Lunar Planet. Sci. Conf. 9, 219–230(1978).ADSGoogle Scholar
  19. Chyba, C. F. Terrestrial mantle siderophiles and the lunar impact record. Icarus 92, 217–233 (1991).ADSCrossRefGoogle Scholar
  20. Chyba, C. F. The violent environment for the origins of life: Progress and uncertainties. Geochim. Cosmochim. Acta 57, 3351–3358. (1993).ADSCrossRefGoogle Scholar
  21. Cloud, P. E. Paleontological significance of the banded iron formations. Econ. Geol. 68, 1135–1143. (1973).CrossRefGoogle Scholar
  22. Compston, W. and Pidgeon, R. T. Jack Hills, evidence of more very old zircons in Western Australia. Nature 291, 193–196 (1986).Google Scholar
  23. Culler, T. S., Becker, T. A., Muller, R. A., and Renne, P. R. Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287, 1785–1788 (2000).ADSCrossRefGoogle Scholar
  24. Dalrymple, G. B. and Ryder, G. 40Ar/39Ar Age spectra of Apollo 15 impact melt rocks by laser step-heat-ing and their bearing on the history of lunar basin formation.J. Geophys. Res.-Planets 98, 13,085–13,095 (1993).ADSCrossRefGoogle Scholar
  25. Dalrymple, G. B. and Ryder, G. 40Ar/39Ar age spectra of Apollo 17 highlands breccia samples by laser step-heating and the age of the Serenitatis basin. J. Geophys. Res.-Planets 101, 26,069–26,084 (1996).ADSCrossRefGoogle Scholar
  26. Dasch, J., Ryder, G., Reese, Y., Wiesmann, H., Chih, C.-Y., and Nyquist, L. Old age of formation for a dis-tinct variety of A17 high-titanium mare basalt. Lunar Planet. Sci. 29, 1750 (1998).ADSGoogle Scholar
  27. Deutsch, A. and Schärer, U. Dating terrestrial impact events. Meteoritics 29, 301–322 (1994).ADSGoogle Scholar
  28. Dymeck, R. F. and Klein, C. Chemistry, petrology, and origin of banded iron formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res. 39, 247–302 (1988).CrossRefGoogle Scholar
  29. Esser, B. K. and Turekian, K. K. Accretion rate of extraterrestrial particles determined from osmium iso-tope systematics of Pacific pelagic clay and manganese nodules. Geochim. Cosmochim. Acta 52,1383–1388(1993).ADSCrossRefGoogle Scholar
  30. Farley, K., Love, S. G., and Patterson, D. B. Atmospheric entry heating and helium retentivity of inter-planetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  31. Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., Compston, W., Williams, I. R., and Myers, J. S. Ion microprobe identification of 4100-4200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).ADSCrossRefGoogle Scholar
  32. Griffin, W. L., McGregor, V. R., Nutman, A. P., Taylor, P. N., and Bridgwater, D. Early Archaean granulite facies metamorphism south of Ameralik, West Greenland. Earth Planet. Sci. Lett. 50, 59–74 (1980).ADSCrossRefGoogle Scholar
  33. Grinspoon, D. H. Large impact events and atmospheric evolution on the terrestrial planets. Ph.D. thesis, Univ. Arizona, 210 pp. (1989).Google Scholar
  34. Gros, J., Takahashi, H., Hertogen, J., Morgan, J. W, and Anders, E. Composition of the projectiles that bombarded the lunar highlands. Proc. Lunar Sci. Conf. 7, 2403–2425 (1976).ADSGoogle Scholar
  35. Halliday, A. N. Terrestrial accretion rates and the origin of the Moon. Earth Planet Sci. Lett. 176, 17–30 (2000).ADSCrossRefGoogle Scholar
  36. Halliday, A. N. and Lee, D.-C. Tungsten isotopes and the early development of the Earth and Moon. Geochim. Cosmochim. Acta 63, 4157–4179 (1999).ADSCrossRefGoogle Scholar
  37. Halliday, A. N., Lee, D.-C, and Jacobsen, S. B. Tungsten isotopes, the timing of metal-silicate fractiona-tion, and the origin of the Earth and Moon. In Origin of Earth and Moon (Canup, R. and Righter, K., Eds.), Univ. Arizona Press, Tucson, 45–62 (2000).Google Scholar
  38. Hartmann, W. K. Early lunar cratering. Icarus 5, 406–418 (1966).ADSCrossRefGoogle Scholar
  39. Hartmann, W. K. Lunar “cataclysm”: A misconception? Icarus 24, 181–187 (1975).ADSCrossRefGoogle Scholar
  40. Hartmann, W K. Dropping stones in magma oceans: Effects of early lunar cratering. Proc. Conf. Lunar Highlands Crust, Pergamon, New York, 155–171 (1980).Google Scholar
  41. Hartmann, W. K., Ryder, G., Dones, L., and Grinspoon, D. The time-dependent intense bombardment of the primordial Earth/Moon system. In Origin of Earth and Moon (Canup, R. and Righter, K., Eds.), Univ. Arizona Press, Tucson, 493–512 (2000).Google Scholar
  42. Haskin, L. A., Korotev, R. L., Rockow, K. M., and Jolliff, B. L. The case for an Imbrium origin of the Apollo thorium-rich impact-melt breccias. Meteor. Planet. Sci. 33, 959–975 (1998).ADSCrossRefGoogle Scholar
  43. Holland, H. D. The oceans: A possible source of iron in banded iron formations. Econ. Geol. 68, 1169–1172(1973).MathSciNetCrossRefGoogle Scholar
  44. Holland, H. D. The chemical evolution of the atmosphere and oceans. Princeton Univ. Press, Princeton, 583 pp. (1984).Google Scholar
  45. James, H. L. Sedimentary facies of banded iron formation. Econ. Geol. 49, 235–293 (1954).CrossRefGoogle Scholar
  46. James, O. B. Petrologic and age relations of the Apollo 16 rocks: Implications for the subsurface geology and age of the Nectaris basin. Proc. Lunar Planet. Sci. Conf. 12, 209–233 (1981).ADSGoogle Scholar
  47. Kamber, B. S. and Moorbath, S. Initial Pb of the Amitsoq gneiss revisited: Implication for the timing of the early Archaean crustal evolution in West Greenland. Chem. Geol. 150, 19–41 (1998).CrossRefGoogle Scholar
  48. Klein, C. and Beukes, N. J. Geochemistry and sedimentology of a facies transition from limestones to iron formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 84, 1733–1744(1989).CrossRefGoogle Scholar
  49. Koeberl, C. and Shirey, S. B. Re-Os systematics as a diagnostic tool for the study of impact craters and dis-tal ejecta. Palaeogeogr, Palaeoclimat., Palaeoecol. 132, 25–46 (1997).CrossRefGoogle Scholar
  50. Kyte, F. T. and Wasson, J. T. Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1229 (1986).ADSCrossRefGoogle Scholar
  51. Levasseur, S., Birk, J.-L., and Allégre, C. L. Direct measurement of femtomoles of osmium and the l87Os/ 186Os ratio in seawater. Science 282, 272–274 (1998).ADSCrossRefGoogle Scholar
  52. Lee, D.-C. and Halliday, A. N. Hf-W isotopic evidence for rapid accretion and differentiation in the solar system. Science 274, 1876–1879 (1996).ADSCrossRefGoogle Scholar
  53. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  54. Maas, R. and McCulloch, M. T. The provenance of Archean clastic metasediments in the Narryer gneiss complex, Western Australia: Trace element geochemistry, Nd isotopes and U-Pb ages for detrital zir-cons: Geochim. Cosmochim. Acta 55, 1915–1932 (1991).ADSCrossRefGoogle Scholar
  55. Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O., and Compston, W. The Earth’s oldest known crust: A geochronological and geochemical study of 3900-4200 Ma old zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992).ADSCrossRefGoogle Scholar
  56. Maher, K. A. and Stevenson, D. J. Impact frustration of the origin of life. Nature 331, 612–614 (1988).ADSCrossRefGoogle Scholar
  57. Maurer, P., Eberhardt, P., Geiss, J., Grögler N., Stettler, A., Brown, G. M., Peckett, A., and Krähenbühl, U. Pre-lmbrian craters and basins: Ages, compositions and excavation depths of Apollo 16 breccias. Geochim. Cosmochim. Acta 42, 1687–1720 (1978).ADSCrossRefGoogle Scholar
  58. McGregor, V R. Age significance of U-Th-Pb data from early Archaean rocks of West Greenland-A reassessment based on combined ion-microprobe and imaging studies-Comment. Chem. Geol. 166, 301–308 (2000).CrossRefGoogle Scholar
  59. McGregor, V R. and Mason, B. Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amîtsoq gneisses, West Greenland. Am. Mineral. 62, 887–904 (1977).Google Scholar
  60. McGregor, V R., Friend, C. R. L., and Nutman, A. P. The late Archaean mobile belt through Godthåbsfjord: A continent-continent collision zone? Bull Geol. Soc. Denmark 39, 179–197 (1991).Google Scholar
  61. Mojzsis, S. J. Ancient sediments of Earth and Mars. Ph.D. thesis, Univ. Calif, San Diego, Scripps Inst. Oceanogr., 300 pp. (1997).Google Scholar
  62. Mojzsis, S. J. and Harrison, T. M. Vestiges of a beginning: Clues to the emergent biosphere recorded in the oldest known sedimentary rocks. GSA Today 10, 1–6 (2000).Google Scholar
  63. Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L. Evi-dence for life on Earth before 3,800 million years ago. Nature 385, 55–59 (1996).ADSCrossRefGoogle Scholar
  64. Mojzsis, S. J., Krishnamurthy, R., and Arrhenius, G. Before RNA and after-geophysical and geochemi-cal constraints on molecular evolution, In RNA world 2nd edition (Gesteland, R., Cech, T., and Atkins, J., Eds.), Cold Spring Harbor Press, New York, 1–47 (1999).Google Scholar
  65. Mojzsis, S. J., Harrison, T. M., and Pidgeon, R. T. Oxygen isotope evidence from ancient zircons for liquid water at Earth’s surface 4300 Myr ago. Nature 408, 178–181 (2001).ADSCrossRefGoogle Scholar
  66. Nutman, A. P., Allaart, J. H., Bridgwater, D., Dimroth, E., and Rosing, M. Stratigraphie and geochemical evidence for the depositional environment of the early Archean Isua supracrustal belt, southern West Greenland. Precambrian Res. 25, 365–396 (1984).CrossRefGoogle Scholar
  67. Nutman, A. P., McGregor, Y R., Friend, C. R. L., Bennett, V. C, and Kinny, P. D. The Itsaq gneiss complex of southern West Greenland: The world’s most extensive record of early crustal evolution (3,900-3,600 Ma). Precambrian Res. 78, 1–39 (1996).CrossRefGoogle Scholar
  68. Nutman, A. P., Mojzsis, S. J., and Friend, C. R. L. Recognition of >3850 Ma water-lain sediments in West Greenland and their significance for the early Archean Earth. Geochim. Cosmochim. Acta 61, 2475–2484 (1997).ADSCrossRefGoogle Scholar
  69. Nutman, A. P., Bennett, V C, Friend, C. R. L., and McGregor, Y R. The early Archaean Itsaq gneiss com-plex of southern West Greenland: The importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution. Geochim. Cosmochim. Acta 64, 3035–3060 (2000a).ADSCrossRefGoogle Scholar
  70. Nyquist, L. E. and Shih, C.-Y. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2213–2234(1992).ADSCrossRefGoogle Scholar
  71. Nyquist, L. E., Wiesmann, H., Bansal, B., Shih, C.-Y., Keith, J. E., and Harper, C. L. l46Sm-142Nd forma-tion interval for the lunar mantle. Geochim. Cosmochim. Acta 59, 2817–2837 (1995).ADSCrossRefGoogle Scholar
  72. Oberbeck, V. and Fogleman, G. Impacts and the origin of life. Nature 339, 434 (1989).ADSCrossRefGoogle Scholar
  73. Peucker-Ehrenbrink, B. and Ravizza, G. The effects of sampling artifacts on cosmic dust flux estimates: A reevaluation of non-volatile tracers (Os, Ir). Geochim. Cosmochim. Acta 64, 1965–1970 (2000).ADSCrossRefGoogle Scholar
  74. Ravizza, G. and Pyle, D. PGE and Os isotopic analyses of single sample aliquots with NiS fire assay pre-concentration Chem. Geol. 141, 251–268 (1997).CrossRefGoogle Scholar
  75. Ryder, G. Lunar samples, lunar accretion, and the early bombardment history of the Moon. Eos, Trans. AGU 71, 313–323(1990).ADSCrossRefGoogle Scholar
  76. Ryder, G. Coincidence in time of the Imbrium basin impact and Apollo 15 volcanic flows: The case for impact-induced melting. Geol. Soc.Am., Spec. Pap. 293, 11–18 (1994).Google Scholar
  77. Ryder, G. and Bower, J. F. Petrology of Apollo 15 black-and-white rocks 15445 and 15455-fragments of the Imbrium impact melt sheet? Proc. Lunar Sci. Conf. 8, 1895–1923 (1977).ADSGoogle Scholar
  78. Ryder, G., Bogard, D., and Garrison, D. Probable age of Autolycus and calibration of lunar stratigraphy. Geology 19, 143–146 (1991).ADSCrossRefGoogle Scholar
  79. Ryder, G., Koeberl, C, and Mojzsis, S. J. Heavy bombardment of the Earth ∼3.85 Ga: Search for petro-graphie and geochemical evidence. In Origin of Earth and Moon (Canup, R. and Righter, K., Eds.), Univ. Arizona Press, Tucson, 475–492 (2000).Google Scholar
  80. Shukolyukov, A. and Lugmair, G. W. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282, 927–929 (1998).ADSCrossRefGoogle Scholar
  81. Sleep, N. H. and Zahnle, K. J. Refugia from asteroid impacts on early Mars and the early Earth. J. Geo-phys. Res.-Planets 103, 28,529–28,544 (1998).ADSCrossRefGoogle Scholar
  82. Sleep, N. H., Zahnle, K. X, Kasting, J. E, and Morowitz, H. J. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142 (1989).ADSCrossRefGoogle Scholar
  83. Snyder, G., Lee, D.-C, Taylor, L. A., Halliday, A. N., and Jerde, E. A. Evolution of the upper mantle of the Earth’s Moon: Neodymium and strontium isotopic constraints from high-Ti mare basalts. Geochim. Cosmochim. Acta 58, 4795–4808 (1994).ADSCrossRefGoogle Scholar
  84. Snyder, G., Hall, C. M., Lee, D.-C, Taylor, L. A., and Halliday, A. N. Earliest high-Ti volcanism on the Moon: 40Ar-39Ar, Sm-Nd, and Rb-Sr isotopic studies of Group D basalts from the Apollo 11 landing site. Meteor. Planet. Sci. 31, 328–334 (1996).ADSCrossRefGoogle Scholar
  85. Snyder, G., Borg, L. E., Nyquyist, L. E., and Taylor, L. A. Chronology and isotopic constraints on lunar evolution. In Origin of Earth and Moon (Canup, R. and Righter, K., Eds.), Univ. Arizona Press, 361–395 (2000).Google Scholar
  86. Spudis, P. D. The geology of multi-ring impact basins. Cambridge Univ. Press, Cambridge, 263 pp. (1993).CrossRefGoogle Scholar
  87. Steiger, R. H. and Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).ADSCrossRefGoogle Scholar
  88. Swindle, T., Spudis, P. D., Taylor, G. J., Korotev, R., Nichols, R. H., and Olinger, C. T. Searching for Cri-sium basin ejecta: Chemistry and ages of Luna 20 impact melts. Proc. Lunar Planet. Sci. Conf. 21, 167–184(1991).ADSGoogle Scholar
  89. Swindle, T. D., Davis, A. M., Hohenburg, C. M., MacPherson, G. J., andNyquist, L. E. Formation times of chondrules and Ca-Al-rich inclusions: Constraints from short-lived radionuclides. In Chondrules and the protoplanetary disk. Cambridge Univ. Press, Cambridge, 77–86 (1996).Google Scholar
  90. Taylor, S. R. Solar system evolution: A new perspective. Cambridge Univ. Press, Cambridge, 307 pp. (1992).Google Scholar
  91. Tera, E, Papanastassiou D. A., and Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974).ADSCrossRefGoogle Scholar
  92. Trendall, A. F. and Blockley, J. G. The iron formations of the Precambrian Hamersley Group, Western Aus-tralia, with special reference to the associated crocidolite. Geol. Surv. W. Australia Bull. 119, 366 (1970).Google Scholar
  93. Turner, G. and Cadogan, P. H. The history of lunar bombardment inferred from 40Ar-39Ar dating of high-land rocks. Proc. Lunar Sci. Conf. 6, 1509–1538(1975).ADSGoogle Scholar
  94. Wetherill, G. W. Nature and origin of basin-forming projectiles. Proc. Lunar Planet. Sci. Conf. 12A, 1–18 (au]1981).Google Scholar
  95. Whitehouse, M. J., Moorbath, S., and Kamber, B. S. Age significance of U-Th-Pb zircon data from early Archaean rocks of West Greenland—A reassessment based on combined ion-microprobe and imaging studies. Chem. Geol. 160, 201–224 (1999).CrossRefGoogle Scholar
  96. Wilde, S. A., Valley, J. W, Peck, W. H., and Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).ADSCrossRefGoogle Scholar
  97. Wilhelms, D. E. Moon. In The geology of the terrestrial planets (Carr, M. H., Saunders, R. S., Strom, R. G., and Wilhelms, D. E., Eds.), NASA SP-469, 107–205 (1984).Google Scholar
  98. Wilhelms, D. E. The geologic history of the Moon. USGS Prof. Pap. 1348, 302 pp. (1987).Google Scholar
  99. Zahnle, K. I and Sleep, N. H. Impacts and the early evolution of life. In Comets and the origin and evolution of life (Thomas, P. J., Chyba, C. F., and McKay, C. P., Eds.), Springer, New York, 175–208 (1997).Google Scholar
  100. Zappalà, V, Cellino, A., Gladman, B. X, Manley, S., and Migliorini, F. Asteroid showers on Earth after fam-ily breakup events. Icarus 134, 176–179 (1998).ADSCrossRefGoogle Scholar
  101. Zhou, L. and Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanogra-phy 7, 441–465 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Stephen J. Mojzsis
    • 1
  • Graham Ryder
    • 2
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.Lunar and Planetary InstituteHoustonUSA

Personalised recommendations