The Lunar Record of Recent Impact Cratering

  • Jennifer A. Grier
  • Alfred S. McEwen


The history of the accretion of extraterrestrial material onto the Earth covers the entire lifetime of the planet, from the accretion of great quantities of mass at the time the planet formed ∼4.5 Ga, to the much less dramatic infall of stones and dust to the Earth today. Impact craters are the scars left behind when some of the larger portions of this infalling material (impactors) strike the planet’s surface. Craters can therefore be used to measure the amount and frequency of mass that impacts a large body such as the Earth. Although processes rapidly eliminate craters on the Earth, the nearby Moon retains a pristine record of recent cratering events.

This chapter examines the record of recent lunar cratering based on counts of young, bright, lunar craters with immature éjecta in order to place limitations on the nature of the impactor population affecting both the Moon and Earth in recent his- tory. Over time, soils on the lunar surface change (mature) because they are exposed to micrometeorite bombardment and the solar wind. Recent research shows that the maturity of lunar impact crater ejecta can be determined remotely from appropriate multi-spectral data. This ejecta maturity can be used to constrain the relative ages of lunar impact craters. The study of large (>20 km diameter) impact craters indicates that the lunar record does not support the idea of an overall increase in the impactor flux into Earth-Moon space in the last 800 Myr versus the previous 2.4 Gyr.


Lunar Surface Impact Crater Lunar Soil Lunar Planet Large Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, E. C, Jr., Bates, A., Coscio, M. R., Jr., Dragon, J. C, Murthy, V R. Peping, R. O., and Venkatesan, R. R. K/Ar dating of lunar soils II. Lunar Planet. Sci. 7, 625 (1976).ADSGoogle Scholar
  2. Alexander, E. C, Jr., Cosicio, M. R., Jr., Dragon, X C, Peping, R. O., and Saito, K. K/Ar dating of lunar soils III: Comparison of 39Ar-40Ar and conventional techniques; 12032 and the age of Copernicus. Proc. Lunar Planet. Sci. Conf. 8, 2725–2740 (1977).ADSGoogle Scholar
  3. Alvarez, L. W., Alvarez, W., Asaro, F., and. Michel, H. V Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  4. Arvidson, R. G., Crozaz, G., Drozd, R. J., Hohenberg, C. M., and Morgan, C. J. Cosmic ray exposure ages for features and events at the Apollo landing sites, Lunar Science Institute, Symposium on Origin and Evolution of the Lunar Regolith, Houston, The Moon 13, 1975, 259–276 (1975).ADSCrossRefGoogle Scholar
  5. Baldwin, R. B. Relative and absolute ages of individual craters and the rates of infalls in the Moon in the post-Imbrium period. Icarus 61, 63–91 (1985).ADSCrossRefGoogle Scholar
  6. Beaty, D. W. and Albee, A. L. Comparative petrology and possible genetic relations among the Apollo 11 basalts. Proc. Lunar Planet. Sci. Conf. 9, 359–463 (1978).ADSGoogle Scholar
  7. Belton, M. J. S., Belton, M. J., Greeley, R., Greenberg, R., McEwen, A., Klaasen, K. P., Head, J. W., III, Pieters, C, Neukum, G., Chapman, C. R., Geissler, P., Hefferman, C, Breneman, H., Anger, C, Carr, M. H., Davies, M. E., Fanale, F. P., Gierasch, P. X, Ingersoll, A. P., Johnson, T. V, Pilder, C. B., Thompson, W. R., Veverka, X, and Sagan, C. Galileo multispectral imaging of the north polar and eastern limb regions of the Moon. Science 264, 1112–1115 (1994).ADSCrossRefGoogle Scholar
  8. Bernatowicz, T. X, Hohenberg, C. M., Hudson, B., Kennedy, B. M., and Podosek, F. A. Argon ages for lunar breccias 14064 and 15405. Proc. Lunar Planet. Sci. Conf. 9, 905–919 (1978).ADSGoogle Scholar
  9. Blewett, D. T., Lucey, P. G., Hawke, B. R., and Jolliff, B. L. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J. Geophys. Res. 102, 16,319–16,325 (1997).ADSCrossRefGoogle Scholar
  10. Bogard, D., Garrison, D., McKay, D, and Wentworth, S. The age of Copernicus: New evidence for 800 ± 15 million years. Lunar Planet. Sci. 28, 133–134(1992).ADSGoogle Scholar
  11. Culler, T. S., Becker, T. A., Muller, R. A., and Renne, P. R. Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287, 1785–1788 (2000).ADSCrossRefGoogle Scholar
  12. Drozd, R. X, Hohenberg, C. M., Morgan, C. X, and Ralston, C. E. Cosmic-ray exposure history at the Apollo 16 and other lunar sites: Lunar surface dynamics. Geochim. Cosmochim. Acta 38, 1625 (1974).ADSCrossRefGoogle Scholar
  13. Eliason, E. M., McEwen, A. S., Robinson, M. S., Lee, E. M., Becker, T., Gaddis, L., Weller, L. A., Isbell, C. E., Shinaman, J. R., Duxbury, T., and Malaret, E. Digital processing for a global multispec-tral map of the Moon from Clementine UVVIS imaging instrument. Lunar Planet. Sci. 30, 1933, CD-ROM (1999).ADSGoogle Scholar
  14. Eugster, O. Chronology of dimict breccias and the age of South Ray crater at the Apollo 16 site. Meteor. Planet. Sci. 34,(1999).Google Scholar
  15. Eugster, O., Eberhardt, P., Geiss, X, Grögler, N., Jungck, M., and Mörgeli, M. The cosmic ray exposure his-tory of Shorty Crater samples; the age of Shorty Crater. Proc. Lunar Planet. Sci. Conf. 8, 3059–3082 (1977).ADSGoogle Scholar
  16. Fischer, E. M. and Pieters, C. M. Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus 111, 475–488 (1994).ADSCrossRefGoogle Scholar
  17. Fischer, E. M. and Pieters, C. M. Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: Normalizing the optical effects of space weathering. J. Geophys. Res. 101, El, 2225–2234 (1996).ADSCrossRefGoogle Scholar
  18. Geiss, X, Eberhardt, P., Grögler, N., Guggisberg, S., Maurer, P., and Stettler, A. Absolute time scale of lunar mare formation and filling, “The Moon-a new appraisal from space mission and laboratory analyses.” Phil. Trans. R. Soc. Lond., A 285, 151 (1977).ADSCrossRefGoogle Scholar
  19. Grier, X A. Determining the ages of impact events: Multidisciplinary studies using remote sensing and sam-ple analysis techniques. Ph.D. thesis, Univ. Arizona, 230 pp. (1999).Google Scholar
  20. Grier, J. A., McEwen, A. S., Strom, R. G, Lucey, P. G., Plassman, J. H., Winburn, I R., and Milazzo, M. A survey of bright lunar craters-developing a relative crater chronology. Lunar Planet. Sci. 30, 1935, CD-ROM (1999a).ADSGoogle Scholar
  21. Grier, J. A., McEwen, A. S., Lucey, P. G., Strom, R. G., and Milazzo, M. Relative ages of large rayed lunar craters-Implications. Lunar Planet. Sci. 30, 1910, CD-ROM (1999b).ADSGoogle Scholar
  22. Grier, J. A., McEwen, A. S., Milazzo, M., Hester, J. A., and Lucey, P. G. The optical maturity of éjecta from small bright rayed lunar craters. Lunar Planet. Sci. 31, 1950, CD-ROM (2000).ADSGoogle Scholar
  23. Grier, J. A., McEwen, A. S., Lucey, P. G., Milazzo, M., and Strom, R. G. The optical maturity of ejecta from large rayed lunar craters.J. Geophys. Res., in press (2001).Google Scholar
  24. Grieve, R. A. F. Extraterrestrial impacts on Earth: The evidence and the consequences. Geol. Soc. Lond., Spec. Publ. 146, 105–131 (1998).CrossRefGoogle Scholar
  25. Grieve, R. A. F. and Shoemaker, E. M. The record of past impacts on earth. In Hazards due to comets and asteroids, (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 417–462 (1994).Google Scholar
  26. Grieve, R. A. F., Sharpton, V L., Rupert, J. D., and Goodacre, A. K. Detecting a periodic signal in the ter-restrial cratering record. Proc. Lunar Planet. Sci. Conf. 18, 375–382 (1988).ADSGoogle Scholar
  27. Hawke, B. R., MacLaskey, D., and McCord, T. B. Multispectral imaging of lunar crater deposits. Lunar Planet. Sci. Contrib. 394, 50–52 (1979).Google Scholar
  28. Hawke, B. R., Blewett, D. T., Lucey, P. G., Peterson, C. A., Bell, J. F. III, Campbell, B. A., and Robinson, M. S. The composition and origin of selected lunar crater rays, new views of the Moon II: Under-standing the Moon through the integration of diverse datasets. New Views of the Moon II: Conf. Proc., 22–23 (1999).Google Scholar
  29. Hirata, N., Haruyama, I, Otake, H., and Ohtake, M. Analysis of dark rings around lunar craters using Clementine imaging data. Lunar Planet. Sci. 30, 1350, CD-ROM (1999).ADSGoogle Scholar
  30. Hörz, F. Mass extinctions and cosmic collisions: A lunar test. In Bases and space activities of the 21st century (Mendell, W. W., Ed.), Lunar Planet. Inst., Houston, 349–358 (1985).Google Scholar
  31. Hörz, F., Grieve, R., Heiken, G., Spudis, P., and Binder, A. Lunar surface processes. In The lunar source-book: A user’s guide to the Moon (Heiken, G., Vaniman, D., and French, B., Eds.), Cambridge Univ. Press, Cambridge, 61–120 (1991).Google Scholar
  32. Isbell, C, Eliason, E. M., Adams, K. C, Becker, T. L., Bennett, A. L., Lee, E. M., McEwen, A. S., Robin-son, M. S., Shinaman, J. R., and Weller, L. A. Clementine: A multispectral digital image model archive of the Moon. Lunar Planet. Sci. 30, 1812, CD-ROM (1999).ADSGoogle Scholar
  33. Lucchitta, B. K. Crater clusters and light mantle at the Apollo 17 site: A result of secondary impact from Tycho. Icarus 30, 1, 80 (1977).ADSCrossRefGoogle Scholar
  34. Lucey, P. G., Taylor, G. X, and Malaret. E. Abundance and distribution of iron on the Moon. Science 268, 1150–1153 (1995a).ADSCrossRefGoogle Scholar
  35. Lucey, P. G., Taylor, G. I, Hawke, B. R., Frost, C, and Blewett, D. Remote absolute age dating of the lunar surface. Bull. Am. Astr. Soc. 27, 54 (1995b).Google Scholar
  36. Lucey, P. G., Blewett, D. T, and Hawke, B. R. Mapping FeO and TiO2 content of the lunar surface with mul-tispectral imagery. J. Geophys. Res. 103, E2, 3679–3699 (1998a).ADSCrossRefGoogle Scholar
  37. Lucey, P. G., Blewett, D. T., and Hawke, B. R. FeO and TiO2 concentrations in the South Pole Aitken basin: Implications for mantle composition and basin formation. J. Geophys. Res. 103, 3701–3708 (1998b).ADSCrossRefGoogle Scholar
  38. Lucey, P. G., Taylor, G., and Hawke, B. R. Global imaging of maturity: Results from Clementine and lunar sample studies. Lunar Planet. Sci. 29, 1356, CD-ROM (1998c).ADSGoogle Scholar
  39. Lucey, P. G., Taylor, G. J., and Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. 105, 20, 387–20,402 (2000).Google Scholar
  40. MacLeod, N. Impacts and marine invertebrate extinctions. Geol. Soc. Lond., Spec. Publ. 146, 217–246 (1998).CrossRefGoogle Scholar
  41. McEwen, A. S. A Precise lunar photometric function. Proc. Lunar Planet. Sci. Conf. 27, 841 (1996).ADSGoogle Scholar
  42. McEwen, A. S. and Robinson, M. S. Mapping of the Moon by Clementine. Adv. Space Res. 19, 1523 (1997).ADSCrossRefGoogle Scholar
  43. McEwen, A. S., Gaddis, L. R., Neukum, G., Hoffman, H., Pieters, C. M., and Head, J. W. Galileo observa-tions of post-Imbrium lunar craters during the first Earth-Moon flyby. J. Geophys. Res. 98, E9, 17,207–17,234(1993).ADSCrossRefGoogle Scholar
  44. McEwen, A. S., Moore, I M., and Shoemaker, E. M. The Phanerozoic impact cratering rate: Evidence from the farside of the Moon. J. Geophys. Res. 102, E4, 9231–9242 (1997).ADSCrossRefGoogle Scholar
  45. McEwen, A. S. Eliason, E., Lucey, P., Malaret, E., Pieters, C, Robinson, M., and Sucharski, T. Summary of radiometric calibration and photometric normalizaton steps for the Clementine UVV1S images. Lunar Planet. Sci. 29, 1466, CD-ROM (1998).ADSGoogle Scholar
  46. McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B., and Papike, J. The lunar regolith. In The lunar sourcebook: A user’ s guide to the Moon (Heiken, G., Vaniman, D. T, and French, B., Eds.), Cambridge Univ. Press, Cambridge, 285–356 (1991).Google Scholar
  47. Melosh, H. J. Impact cratering: A geologic process. Oxford Univ. Press, New York, 245 pp. (1989).Google Scholar
  48. Montanari, A., Campo Bagatin, A., and Farinella, P. Earth cratering record and impact energy flux in the last 150 Ma. Planet. Space Sci. 46, 23, 271–281 (1998).ADSCrossRefGoogle Scholar
  49. Morrison, D., Chapman, C. R., and Slovic, P. The impact hazard. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 59–92 (1994).Google Scholar
  50. Napier, W. M. Galactic periodicity and the geological record. Geol. Soc. Lond., Spec. Publ. 140, 19–29 (1998).ADSCrossRefGoogle Scholar
  51. Neukum, G. and König, B. Dating of individual lunar craters. Proc. Lunar Sci. Conf. 7, 2867–2881 (1976).ADSGoogle Scholar
  52. Nozette S., Lewis, I. T., Lichtenberg, C. L., Lucey, P. G., Malaret, E., Massie, M. A., Resnick, J. H., Rollins, C. J., Park, H. S., McEwen, A. S., Priest, R. E., Pieters, C. M., Reisse, R. A., Robinson, M. S., Simpson, R. A., Smith, D. E., Sorenson, T. C, Bruegge, R., Vorder, W., and Zuber, M. T. The Clemen-tine mission to the Moon: Scientific overview. Science 266, 1835 (1994).ADSCrossRefGoogle Scholar
  53. Oberbeck, V R. The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys. 13, 337–362 (1975).ADSCrossRefGoogle Scholar
  54. Pieters, CM., Adams, J. B., Mouginis-Mark, P. J., Zisk, S. H., Smith, M. O., Head, J. W., and McCord, T. B. The nature of crater rays: The Copernicus example. J. Geophys. Res. 90, B14, 12,393–12,413 (1985).ADSCrossRefGoogle Scholar
  55. Pieters, C. M., Pratt, S., Hoffman, H., Helfenstein, P., and Mustard, J. Bi-directional spectroscopy of returned lunar soils: Detailed “ground-truth” for planetary remote sensors. Proc. Lunar Planet. Sci. Conf. 11, 1069(1991).ADSGoogle Scholar
  56. Ryder, G., Bogard, D., and Garrison, D. Probable age of Autolycus and calibration of lunar stratigraphy. Geology 19, 143–146 (1991).ADSCrossRefGoogle Scholar
  57. Schultz, P. H. and Gault, D. E., Clustered impacts: Experiments and implications. J. Geophys. Res. 90, 3701–3732(1985).ADSCrossRefGoogle Scholar
  58. Shkuratov, Y. G., Kaydash, V G., and Opanasenko, N.V Iron and titanium abundance and maturity degree distribution on the lunar nearside. Icarus 137, 222–234 (1999).ADSCrossRefGoogle Scholar
  59. Shoemaker, E. M. Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum. JPL Tech. Rept. 32-800, 249–337 (1966).Google Scholar
  60. Shoemaker, E. M. Asteroid and comet bombardment of the Earth. Annu. Rev. Earth Planet. Sci. 11, 461–494 (1983).ADSCrossRefGoogle Scholar
  61. Shoemaker, E. M. Large body impacts through geologic time. In Patterns of change in Earth evolution, (Holland, H. D. and Trendall, A. F., Eds.), Springer, Berlin, 15–40 (1984).CrossRefGoogle Scholar
  62. Shoemaker, E. M. Long-term variations in the impact cratering rate on Earth. Geol. Soc. Lond., Spec. Publ. 140, 7–10 London (1998).ADSCrossRefGoogle Scholar
  63. Shoemaker, E. M. and Hackman, R. J. Stratigraphie basis for a lunar time scale. In The Moon (Kopal, Z. and Mikhailov, Z. K., Eds.), Academic Press, London, 289–300 (1962).Google Scholar
  64. Shoemaker, E. M. and Shoemaker, C. S. The Proterozoic impact record of Australia. AGSO, J. Austral. Geol. Geophys. 16 (1996).Google Scholar
  65. Shoemaker, E. M. and Wolfe, R. F. Mass extinctions, crater ages and comet showers. In The galaxy and the solar system, (Smoluchowski, R., et al., Eds.), Univ. Arizona Press, Tucson, 338–386 (1986).Google Scholar
  66. Silver, L. T. U-Th-Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact. Eos, Trans. AGU 52, 7, 534 (1971).Google Scholar
  67. Smrekar, S. and Pieters, C. M. Near-infrared spectroscopy of probable impact melt from three large lunar highland craters. Icarus 63, 442–452 (1985).ADSCrossRefGoogle Scholar
  68. Strom, R. G. Origin and relative ages of lunar and mercurian intercrater plains. Phys. Earth Planet. Intl. 15, 156–172(1978).ADSCrossRefGoogle Scholar
  69. Toon, O. B., Zahnle, K., Turco, R. P., and Covey, C. Environmental perturbations caused by impacts. In Hazards due to comets and asteroids, (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 791–826 (1994).Google Scholar
  70. Wasson, J. T. and Baedecker, P. A. Provenance of Apollo 12 KREEP. Lunar Planet. Sci. 3, 1315–1326 (1972).ADSGoogle Scholar
  71. Wilhelms, D. E. The geologic history of the Moon, USGS Prof. Pap. 1348, 302 pp. (1987).Google Scholar
  72. Wilhelms, D. E., Oberbeck, V R., and Aggarwal, H. R. Size-frequency distributions of primary and sec-ondary lunar impact craters. Proc. Lunar Planet Sci. Conf. 9, 3735–3762 (1978).ADSGoogle Scholar
  73. Wolfe, E. W, Lucchitta, B. K., Reed, V S., Ulrich, G. E., and Sanchez, A. G. Geology of the Taurus-Littrow valley floor. Proc. Lunar Sci. Conf. 6, 2463–2482 (1975).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jennifer A. Grier
    • 1
  • Alfred S. McEwen
    • 1
  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations