Advertisement

Sources and Orbital Evolution of Interplanetary Dust Accreted by Earth

  • Stephen J. Kortenkamp
  • Stanley F. Dermott
  • Debra Fogle
  • Keith Grogan

Abstract

We review observational and theoretical constraints on the relative contributions of asteroids and comets to interplanetary dust particles (IDPs) in the zodiacal cloud. The estimated contributions span a broad range but the most abundant unambiguous sources are asteroid families, the progenitors of the observed zodiacal dust bands. Other features of the zodiacal cloud indicate additional contributions from non-family asteroids and short-period comets. Numerical modeling of the orbital evolution of IDPs from all these sources reveals natural mechanisms which bias the terrestrial dust accretion rate heavily in favor of asteroidal IDPs, in particular, those originating in the Eos, Themis, and Koronis asteroid families. Over an extended time scale the accretion rate of IDPs from all asteroidal sources should vary by a factor of two to three and display a 100 kyr periodicity that is anti-correlated with Earth’s orbital eccentricity. Extraterrestrial 3He concentrations in deep-sea sediments have a similar periodicity but are 50 kyr out of phase with the predicted variations. Possible expla- nations of this 180° phase lag are discussed.

Keywords

Dust Particle Orbital Evolution Asteroid Belt Interplanetary Dust Cometary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bums, J. A., Lamy, P. L., and Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).ADSCrossRefGoogle Scholar
  2. Dermott, S. F., Nicholson, P. D., Burns, J. A., and Houck, J. R. Origin of the solar system dust bands discovered by IRAS. Nature 312, 505–509 (1984).ADSCrossRefGoogle Scholar
  3. Dermott, S. E, Gomes, R. S., Durda, D. D., Gustafson, B.Å.S., Jayaraman, S., Xu, Y. L., and Nicholson, P. D. Dynamics of the zodiacal cloud. In Chaos, resonance and collective dynamical phenomena in the solar system (Ferraz-Mello, S., Ed.), Kluwer, Dordrecht, 333–347 (1992).Google Scholar
  4. Dermott, S. F., Durda, D. D., Gustafson, B.Å.S., Jayaraman, S., Liou, J. C, and Xu, Y. L. Zodiacal dust bands. In Asteroids, comets and meteors 1993 (Milani, A., Martini, M., and Cellino, A., Eds.), IAU Press, Netherlands, 127–142 (1994a).CrossRefGoogle Scholar
  5. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. A. S., and Liou, J. C. A circumsolar ring of aster-oidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994b).ADSCrossRefGoogle Scholar
  6. Dermott, S. F., Jayaraman, S., Xu, Y. L., Grogan, K., and Gustafson, B. Å. S. The origin and dynamics of the interplanetary dust cloud. In Unveiling the cosmic infrared background (Dwek, E., Ed.), AIP Press, 25–36(1996).Google Scholar
  7. Farley, K. A. and Patterson, D. B. A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature 378, 600–603 (1995).ADSCrossRefGoogle Scholar
  8. Farley, K. A., Love, S. G., and Patterson, D. B. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  9. Flynn, G. J. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989).ADSCrossRefGoogle Scholar
  10. Flynn, G. J. The near-Earth enhancement of asteroidal over cometary dust. Proc. Lunar Planet, Sci, Conf. 20,363–371 (1990).ADSGoogle Scholar
  11. Flynn, G. J. Collisions in the Kuiper belt and the delivery of interplanetary dust to the Earth. Icarus (2000, in press).Google Scholar
  12. Grogan, K.., Dermott, S. F., Jayaraman, S. and Xu, Y. L. Origin of the ten degree solar system dust bands. Planet. Space Sci. 45, 1657–1665 (1997).ADSCrossRefGoogle Scholar
  13. Grogan, K., Dermott, S. E, and Durda, D. D. The size-frequency distribution of the zodiacal cloud: Evidence from the solar system dust bands. Icarus (2000, in preparation).Google Scholar
  14. Gustafson, B. Á. S. Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci. 22, 553–595 (1994).ADSCrossRefGoogle Scholar
  15. Ishiguro, M., Nakamura, R., Fujii, Y, Morishige, K., Yano, H., Yasuda, H., Yokogawa, S., and Mukai, T. First detection of visible zodiacal dust bands from ground-based observations. Astrophys. J. 511, 432–435 (1999).ADSCrossRefGoogle Scholar
  16. Jackson, A. A. and Zook, H. A. A solar system dust ring with the Earth as its shepherd. Nature 337, 629–631 (1989).ADSCrossRefGoogle Scholar
  17. Jackson, A. A. and Zook, H. A. Orbital evolution of dust particles from comets and asteroids. Icarus 97, 70–84 (1992).ADSCrossRefGoogle Scholar
  18. Jayaraman, S. and Dermott, S. F. Estimating the asteroidal component of the zodiacal cloud using the Earth’s resonant ring. In Physics, chemistry and dynamics of interplanetary dust, ASP Conf. Series 104 (Gustafson, B. Å. S. and Hanner, M. S., Eds.), ASP Publ., San Francisco, 155–158 (1996).Google Scholar
  19. Kessler, D. J. Derivation of the collision probability between orbiting objects: The lifetime of Jupiter’s outer moons. Icarus 48, 39–48 (1981).ADSCrossRefGoogle Scholar
  20. Kortenkamp, S. J. and Dermott, S. F. Accretion of interplanetary dust particles by the Earth. Icarus 135, 469–495 (1998a).ADSCrossRefGoogle Scholar
  21. Kortenkamp, S. J. and Dermott, S. F. A 100,000 year periodicity in the accretion rate of interplanetary dust. Science 280, 874–876 (1998b).ADSCrossRefGoogle Scholar
  22. Liou, J. C. and Zook, H. Comets as a source of low eccentricity and low inclination interplanetary dust particles. Icarus 123, 491–502 (1996).ADSCrossRefGoogle Scholar
  23. Liou, J. C. and Zook, H. Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus 128, 354–367 (1997).ADSCrossRefGoogle Scholar
  24. Liou, J. C, Dermott, S. F., and Xu, Y. L. The contribution of cometary dust to the zodiacal cloud. Planet. Space Sci. 43-6, 717–722 (1995).ADSCrossRefGoogle Scholar
  25. Liou, J. C, Zook, H., and Dermott, S. F. Kuiper belt dust grains as a source of interplanetary dust particles, Icarus 124, 429–440 (1996).ADSCrossRefGoogle Scholar
  26. Lisse, C. M., A’Hearn, M. F., Hauser, M. G., Kelsall, T., Lien, D. J., Moseley, S. H., Reach, W. T., and Silverberg, R. F. Infrared observations of comets by COBE. Astrophys. J. 496, 971–991 (1998).ADSCrossRefGoogle Scholar
  27. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  28. Low, F. J. and 16 colleagues. Infrared cirrus: New components of the extended infrared emission. Astrophys. J. Lett. 278, L19–L22 (1984).ADSCrossRefGoogle Scholar
  29. Marcantonio, F., Anderson, R. F., Stute, M. S., Kumar, N., Schlosser, P., and Mix, A. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, 705–707 (1996).ADSCrossRefGoogle Scholar
  30. Migliorini, F., Michel, P., Morbidelli, A., Nesvorny, D., and Zappalà, V Origin of multikilometer Earth-and Mars-crossing asteroids: A quantitative simulation. Science 281, 2022–2024 (1998).ADSCrossRefGoogle Scholar
  31. Morbidelli, A. and Nesvorný, D. Numerous weak resonances drive asteroids toward terrestrial planet orbits. Icarus 139, 295–308 (1999).ADSCrossRefGoogle Scholar
  32. Müller, R. A. and MacDonald, G. J. Glacial cycles and orbital inclination. Nature 377, 107–108 (1995).CrossRefGoogle Scholar
  33. Muller, R. A. and MacDonald, G. J. Glacial cycles and astronomical forcing. Science 277,215–218 (1997).ADSCrossRefGoogle Scholar
  34. Öpik, E. J. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Irish Acad. 54-A, 165–199 (1951).Google Scholar
  35. Patterson, D. B. and Farley, K. A. Extraterrestrial 3He in sea floor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta 62, 3669–3682 (1998).ADSCrossRefGoogle Scholar
  36. Reach, W. T. Zodiacal emission. III. Dust near the asteroid belt. Astrophys. J. 392, 289–299 (1992).ADSCrossRefGoogle Scholar
  37. Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W, and Spiesman, W. J. Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature 374, 521–523 (1995).ADSCrossRefGoogle Scholar
  38. Reach, W. T., Franz, B. A., and Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).ADSCrossRefGoogle Scholar
  39. Rial, J. A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science 285, 564–568 (1999).CrossRefGoogle Scholar
  40. Sykes, M. V and Walker, R. G. Cometary dust trails: I. Survey. Icarus 95, 180–210 (1992).ADSCrossRefGoogle Scholar
  41. Sykes, M. V, Lebofsky, L. A., Hunten, D. M., and Low, F. The discovery of dust trails in the orbits of periodic comets. Science 232, 1115–1117 (1986).ADSCrossRefGoogle Scholar
  42. Sykes, M. V, Lien, D. J, and Walker, R. G. The Tempel 2 dust trail. Icarus 86, 236–247 (1990).ADSCrossRefGoogle Scholar
  43. Weissman, P. R., A’Hearn, M. E, McFadden, L. A., and Rickman, H. Evolution of comets into asteroids. In Asteroids II (Binzel, R., Gehrels, T., and Matthews, M., Eds.), Univ. Arizona Press, Tucson, 880–920, (1989).Google Scholar
  44. Wetherill, G. W. Where do the Apollo objects come from? Icarus 76, 1–18 (1988).ADSCrossRefGoogle Scholar
  45. Whipple, F. L. On maintaining the meteoritic complex. Smithson. Astrophys. Obs. Spec. Rept. 239, 1–46 (1967).ADSGoogle Scholar
  46. Williams, I. P. Meteoroid streams and the sporadic background. Earth, Moon, Planets 68, 1–12 (1995).ADSCrossRefGoogle Scholar
  47. Williams, J. G. Asteroid families—An initial search. Icarus 96, 251–280 (1992).ADSCrossRefGoogle Scholar
  48. Wisdom, J. Meteorites may follow a chaotic route to Earth. Nature 315, 731–733 (1985).ADSCrossRefGoogle Scholar
  49. Wyatt, S. P. and Whipple, F. L. The Poynting-Robertson effect on meteor orbits Astrophys. J. 111, 134–141 (1950).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Stephen J. Kortenkamp
    • 1
    • 2
  • Stanley F. Dermott
    • 3
  • Debra Fogle
    • 3
  • Keith Grogan
    • 4
  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA
  2. 2.Department of Terrestrial MagnetismCarnegie Institution of WashingtonUSA
  3. 3.Department of AstronomyUniversity of FloridaGainesvilleUSA
  4. 4.Goddard Space Flight CenterNASAGreenbeltUSA

Personalised recommendations