Skip to main content

The Terrestrial Cratering Record

  • Chapter

Abstract

The Earth is the most endogenically active of the terrestrial planets and thus, has retained the poorest sample of impacts that have occurred throughout geologic time. The current known sample consists of approximately 160 impact structures or crater fields and 20 impact events also registered as depositional events in the stratigraphie record, some of which are related to known structures. The sample is biased towards young (<200 Ma) large (>20 km diameter) impact structures on the geologically better know cratonic areas. The known terrestrial impact record is sufficient to estimate a terrestrial cratering rate for the last few hundred million years. The present resolution of the record, however, does not unequivocally support suggestions of periodic impacts. Approximately 30% of known impact structures are buried and were initially detected as geophysical anomalies and subsequently drilled to provide geologic samples. The recognition of terrestrial impact structures may, or may not, come from the discovery of an anomalous quasi-circular topographic, geologic or geophysical feature. In the geologically active terrestrial environment, anomalous quasi-circular features, however, do not automatically equate with an impact origin. Specific samples must be acquired and the occurrence of shock metamorphism or, in the case of small craters, meteoritic fragments, must be demonstrated before an impact origin can be confirmed. Terrestrial impact structures result in unusual local geologic conditions, which can lead to the concentration of natural resources, such as minerals and hydrocarbons; in some cases, the economic deposits are world-class. Impact represents a long-term hazard to human civilization and is responsible for at least, one mass extinction of the biosphere, at the Cretaceous-Tertiary boundary 65 Ma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, W. and Muller, R. Evidence from crater ages of periodic impact on the Earth. Nature 308, 712–720(1984).

    Article  ADS  Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  ADS  Google Scholar 

  • Baski, A. K. Search for periodicity in global events in the geologic record: Quo vadimus? Geology 18, 983–986 (1990).

    Article  ADS  Google Scholar 

  • Bohor, B., Foord, E. E., Modreski, P. X, and Triplehorn, D. M. Mineralogie evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224, 867–869 (1984).

    Article  ADS  Google Scholar 

  • Chao, E. C. T., Fahey, J. X, Littler, X, and Milton, D. J. Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J. Geophys. Res. 67, 419–421 (1962).

    Article  ADS  Google Scholar 

  • Corner, B., Reimold, W. U., Brandt, D., and Koeberl, C. Morokweng impact structure, Northwest Province, South Africa: Geophysical imaging and shock pétrographie studies. Earth Planet. Sci. Lett. 146, 351–364(1997).

    Article  ADS  Google Scholar 

  • Davis, M., Hut, P., and Muller, R. A. Extinction of species by cometary showers. Nature 308,715–717, (1984).

    Article  ADS  Google Scholar 

  • Dietz, R. S. Vredefort ring structure: Meteorite impact scar. J. Geol. 70, 502–504 (1961).

    Article  ADS  Google Scholar 

  • Dietz, R. S. Shatter cones in cryptoexplosion structures. In Shock metamorphism of natural materials (French, B. M. and Short, N. M.,Eds.), Mono, Baltimore, 267–285 (1968).

    Google Scholar 

  • Dence, M. R. The nature and significance of terrestrial impact structures. 24th Intl. Geol. Congr., Section 15, 77–89 (1972).

    Google Scholar 

  • Donofrio, R. R. Ames structure in northwest Oklahoma and similar features: Origin and petroleum pro-duction. Oklahoma Geol. Sur. Cire. 100, 17–29 (1977).

    Google Scholar 

  • Engelhardt, W. von. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany-a review. Tectonophysics 171, 259–273 (1990).

    Article  ADS  Google Scholar 

  • Faggart, B. E., Basu, A. R., and Tatsumoto, M. Origin of the Sudbury complex by meteoritic impact: Neodymium isotopic evidence. Science 230, 436–439 (1985).

    Article  ADS  Google Scholar 

  • Floran, R. J. and Dence, M. R. Morphology of the Manicouagan ring-structure, Quebec, and some comparisons with lunar basins and craters. Proc. Lunar Sci. Conf. 7, 2845–2865 (1976).

    ADS  Google Scholar 

  • French, B. and Short, N. M. (Eds.) Shock metamorphism of natural materials. Mono, Baltimore, 644 pp. (1968).

    Google Scholar 

  • French, B., Koeberl, C, Gilmour, I., Shirey, S. B., Dons, J. A., and Naterstad, J. The Gardnos impact struc-ture, Norway: Petrology and geochemistry of target rock and impactites. Geochim. Cosmochim. Acta 61,873–904(1997).

    Article  ADS  Google Scholar 

  • Garvin, J. B. and Schnetzler, C. C. The Zhamanshin impact feature: A new class of complex crater? Geol. Soc. Am., Spec. Pap. 293, 249–257 (1994).

    Google Scholar 

  • Gehreis, T. (Ed.) Hazards due to cornets and asteroids. Univ. Arizona Press, Tuscon, 1300 pp. (1994).

    Google Scholar 

  • Gostin, V. A. and Therriault, A. M. Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwest Queensland, Australia. Meteor. Planet. Sci. 32, 593–599 (1997).

    Article  ADS  Google Scholar 

  • Grieve, R. A. F. Terrestrial impact structures: Basic characteristics and economic significance, with special emphasis on hydrocarbon production. In Ames structure in northwest Oklahoma and similar features: Origin and petroleum production (Johnson, K. S. and Campbell, J. A., Eds.), Oklahoma Geol. Sur. Cire. 100,3–16(1997).

    Google Scholar 

  • Grieve, R. A. F. and Head, J. W. The Manicouagan impact structure: An analysis of its original dimensions and form. J. Geophys. Res. 88, A807–A818 (1983).

    Article  ADS  Google Scholar 

  • Grieve, R. A. F. and Pesonen, L. J. Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies. Earth, Moon, Planets 72, 357–376 (1996).

    Article  ADS  Google Scholar 

  • Grieve, R. A. F. and Masaitis, V. L. The economic potential of terrestrial impact craters. Intl. Geol. Rev. 36, 105–151 (1994).

    Article  Google Scholar 

  • Grieve, R. A. F. and Pilkington, M. The signature of terrestrial impacts. AGSO J. Austral. Geol. Geophys. 16, 399–420 (1996).

    Google Scholar 

  • Grieve, R. A. F. and Shoemaker, E. M. The record of past impacts on Earth. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tuscon, 417–462 (1994).

    Google Scholar 

  • Grieve, R. A. F. and Therriault, A. M. Vredefort, Sudbury, Chicxulub: Three of a kind? Annu. Rev. Earth Planet. Sci. 28, 305–338 (2000).

    Article  ADS  Google Scholar 

  • Grieve, R. A. F., Kreis, L. K., and Therriault, A. M. Impact structures of the western sedimentary basin of North America: New discoveries and hydrocarbon resources. In Eigth international Williston Basin symposium (Christopher, J. E., Gilboy, C. F., Paterson, D. F., and Bend, S. L., Eds.), Sask. Geol. Soc, Spec. Publ. 13, 189–201 (1998).

    Google Scholar 

  • Grieve, R. A. F, Dence, M. R., and Robertson, P. B. Cratering processes: As interpreted from the occur-rence of impact melts. In Impact and explosion cratering (Roddy, D. J., Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 791–814 (1977).

    Google Scholar 

  • Grieve, R. A. F., Langenhorst, F., and Stöffler, D. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteor. Planet. Sci. 31, 6–35 (1996).

    Article  ADS  Google Scholar 

  • Grieve, R. A. F., Sharpton, V. L., Rupert, J. B., and Goodacre, A. K. Detecting a periodic signal in the ter-restrial cratering record. Proc. Lunar Planet. Sci. Conf. 18, 375–382 (1988).

    ADS  Google Scholar 

  • Gudlaugsson, S. T. Large impact crater in the Barents Sea. Geology 21, 291–294 (1993).

    Article  ADS  Google Scholar 

  • Haines, P. W. Goyder impact structure, Arnhem Land, Northern Territory. AGSO J. Austral. Geol. Geophys. 16, 561–566 (1996).

    Google Scholar 

  • Hartmann, W. K. Planetary Cratering I: Lunar highlands and tests of hypothesis on crater populations. Meteor. Planet. Sci. 30, 451–467 (1995).

    Google Scholar 

  • Henkel, H. H. Geophysical aspects of impact craters in eroded shield environments, with special emphasis on electric resistivity. Tectonophysics 216, 63–90 (1992).

    Article  ADS  Google Scholar 

  • Heisler, J. and Tremaine, S. How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77, 213–219 (1989).

    Article  ADS  Google Scholar 

  • Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, A. Z., Jacobsen, S. B., and Boynton, W. V Chicxulub crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19, 867–871 (1991).

    Article  ADS  Google Scholar 

  • Hörz, F Statistical measurements of deformation structures and refractive indices in experimentally shock-heated quartz. In Shock metamorphism of natural materials (French, B. M. and Short, N. M., Eds.), Mono, Baltimore, 243–253 (1968).

    Google Scholar 

  • Jahn, B., Floran, R. J., and Simonds, C. H. Rb-Sr isochron age of the Manicouagan melt sheet, Quebec, Canada. J. Geophys. Res. 83, 2799–2803 (1978).

    Article  ADS  Google Scholar 

  • Jetsu, L. and Pelt, J. Spurious periods in the terrestrial impact record. Astron. Astrophys. 353, 409–418 (2000).

    ADS  Google Scholar 

  • Koeberl, C, Shirey, S. B., and Reimold, W. U. Re-Os isotope systematics as a diagnostic tool for the study of impact craters. Lnar Planet. Inst. Contrib. 825, 61–63 (1994).

    ADS  Google Scholar 

  • Koeberl, C, Reimold, W. V, and Shirey, S. B. Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology 24, 913–916 (1996).

    Article  ADS  Google Scholar 

  • Kyte, F. T., Zhou, Z., and Wasson, J. T. New evidence on the size and possible effects of a late Pliocene oceanic asteroid impact. Science 241, 63–65 (1988).

    Article  ADS  Google Scholar 

  • Lehtovaara, J. J. Söderfjärden: A Cambrian impact crater in western Finland. Tectonophysics 216, 157–161 (1992).

    Article  ADS  Google Scholar 

  • Lindström, M. and Sturkell, E. F. F. Geology of the early Paleozoic Lockne impact structure, central Sweden. Tectonophysics 216, 169–185 (1992).

    Article  ADS  Google Scholar 

  • Masaitis, V L. Popigai crater: Origin and distribution of diamond-bearing impactites. Meteor. Planet. Sci. 33,349–359(1998).

    Article  ADS  Google Scholar 

  • Melosh, H. J. Atmospheric breakup of terrestrial impactors. In Multi-ring basins (Schultz, P. H. and Merrill, P. B., Eds.), Pergamon, New York, 29–35 (1981).

    Google Scholar 

  • Melosh, H. J. Impact cratering: A geologic process. Oxford Univ. Press, New York, 245 pp. (1989).

    Google Scholar 

  • Milton, D. J. Shatter cones-an outstanding problem in cratering mechanics? In Impact and explosion cra-tering (Roddy, D. I, Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 703–714 (1977).

    Google Scholar 

  • Milton, D. X, Glikson, A. Y, and Brett, R. Gosses Bluff-a latest Jurassic impact structure central Australia. Part 1: geological structure, stratigraphy and origin. AGSO J. Austral. Geol. Geophys. 16, 453–486(1996).

    Google Scholar 

  • Morgan, J. and Warner, M. Chicxulub: The third dimension of a multi-ring impact basin. Geology 27, 407–410(1999)

    Article  ADS  Google Scholar 

  • Orth, C. J., Attrep, M. I, and Quintana, L. R. Iridium abundance patterns across bio-event horizons in the fossil record. Geol. Soc. Am., Spec. Pap. 247, 45–60 (1990).

    Google Scholar 

  • Neukum, G. and Ivanov, B. A. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 359–416 (1994).

    Google Scholar 

  • Palme, H. Identification of some projectiles of large terrestrial impact craters and implications for the inter-pretation of Ir-rich Cretaceous-Tertiary boundary layers. Geol. Soc. Am., Spec. Pap. 190, 223–233 (1982).

    Google Scholar 

  • Palme, H., Goebel, E., and Grieve, R. A. F. The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec). Proc. Lunar Planet. Sci. Conf. 10, 2465–2492 (1979).

    ADS  Google Scholar 

  • Palme, H., Grieve, R. A. E, and Wolf, R. Identification of the projectile at Brent crater, and further con-siderations of projectile types at terrestrial craters. Geochim. Cosmochim. Acta 45, 2417–2424 (1981).

    Article  ADS  Google Scholar 

  • Penfield, G. T. and Camargo, A. Z. Definition of a major igneous zone in the central Yucatan platform with aeromagnetics and gravity (abst.). Soc. Explor. Geophys. 51st Annu. Mtg., 37 (1981).

    Google Scholar 

  • Pike, R. J. Formation of complex impact craters: Evidence from Mars and other planets. Icarus 43, 1–19 (1980).

    Article  ADS  Google Scholar 

  • Poag, C. W, Powars, D. S., Poppe, L. J., Mixon, R. B. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field. Geology 22, 691–694 (1994).

    Article  ADS  Google Scholar 

  • Rampino, M. R. and Stothers, R. B. Geological rhythms and cometary impacts. Science 226, 1427–1431 (1984).

    Article  ADS  Google Scholar 

  • Rampino, M. R. and Haggerty, B. M. Extraterrestrial impact and the extinction of life. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 827–858 (1994).

    Google Scholar 

  • Rampino, M. R. and Haggerty, B. M. The’ shiva hypothesis:’ Impacts, mass extinctions and the galaxy. Earth, Moon, Planets 72, 441–460 (1996).

    Article  ADS  Google Scholar 

  • Raup, D. M. and Sepkoski, J. J. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. 81, 801–805 (1984).

    Article  ADS  Google Scholar 

  • Robertson, P. B. and Sweeney, J. F. Haughton impact structure: Structural and morphological aspects. Can. J. Earth Sci. 20, 1134–1151 (1983).

    Article  ADS  Google Scholar 

  • Roddy, D. J. and Davis, L. K. Shatter cones formed in large experimental explosion craters. In Impact and explosion cratering (Roddy, D. X, Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 715–750(1977).

    Google Scholar 

  • Roddy, D. I, Pepin, R. O., and Merrill, R. B. (Eds.) Impact and explosion cratering. Pergamon, New York, 1301 pp. (1977).

    Google Scholar 

  • Sharpton, V L., Burke, K.., Camargo-Zanoguera, A., Hall, S. A., Lee, D. S., Marin, L. E., Suarez-Reynoso, G., Quezaela-Muneton, J. M., Spudis, P. D., and Urrita-Fucugauchi, J. Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science 261, 1564–1567 (1993).

    Article  ADS  Google Scholar 

  • Shoemaker, E. M. and Shoemaker, C. S. The Proterozoic impact record of Australia. AGSOJ. Austral. Geol. Geophys. 16, 379–398 (1996).

    Google Scholar 

  • Simpson, C. The structure of the rim syndinorium of the Vredefort Dome. Trans. Geol. Soc. S. Afr. 81, 115–121 (1978).

    Google Scholar 

  • Smit, J. and Hertogen, J. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285, 158–200(1980).

    Article  Google Scholar 

  • Snyder, D., Hobbs, R. W., and the Chicxulub Working Group. Ringed structural zones with deep roots formed by the Chicxulub impact. J. Geophys. Res. 104, 743–755 (1999).

    Article  Google Scholar 

  • Spray, J. G. and Thompson, L. M. Friction melt distribution in terrestrial multi-ring impact basins. Nature 373, 130–132 (1995).

    Article  ADS  Google Scholar 

  • Spudis, P. D. The Geology of multi-ring impact basins. Cambridge Univ. Press, Cambridge (1993).

    Book  Google Scholar 

  • Stöffler, D. Progressive metamorphism and classification of shocked and brecciated crystalline rocks in impact craters. J. Geophys. Res. 76, 5541–5551 (1971).

    Article  ADS  Google Scholar 

  • Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschr. Mineral. 49, 50–113 (1972).

    Google Scholar 

  • Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. II. Physical properties of shocked minerals. Fortschr. Mineral. 51, 256–289 (1974).

    Google Scholar 

  • Stöffler, D. and Hornemann, U. Quartz and feldspar glasses produced by natural and experimental shock. Meteoritics 7, 371–394 (1972).

    ADS  Google Scholar 

  • Stöffler, D. and Langenhorst, F. Shock metamorphism of quartz in nature and experiment: I. Basic obser-vation and theory. Meteoritics 29, 155–181 (1994).

    ADS  Google Scholar 

  • Stöffler, D., Deutsch, A., Avermann, M., Bischoff, L., Brockmeyer, P., Buhl, D., Lakomy, R., and Müller-Mohr, V Geol. Soc. Am., Spec. Pap. 293,303–318(1994).

    Google Scholar 

  • Stothers, R. B. Impact cratering at geologic stage boundaries. Geophys. Res. Lett. 20, 887–890 (1993).

    Article  ADS  Google Scholar 

  • Stothers, R. B. and Rampino, M. R. Periodicity in flood basalts, mass extinctions, and impacts: A statisti-cal view and a model. Geol. Soc. Am., Spec. Pap. 247, 9–18 (1990).

    Google Scholar 

  • Therriault, A. M. and Lindström, M. Planar deformation features in quartz grains from the resurge deposit of the Lockne structure, Sweden. The formation of the Sudbury structure: Toward a unified impact model. Meteor. Planet. Sci. 30, 700–703 (1995).

    Google Scholar 

  • Therriault, A. M., Grieve, R. A. F, and Reimold, W. U. Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin. Meteor. Planet. Sci. 32, 71–77 (1997).

    Article  ADS  Google Scholar 

  • Therriault, A. M., Reimold, W. U., and Reid, A. M. Field relations and petrography of the Vredefort Granophyre. S. Afr. J. Geol. 1, 1–21 (1996).

    Google Scholar 

  • Toledo, A. C. and Osuna, A. Ft. Las anomalies gravimetricas en le cuena salina del istma, planicie costera de Tabasco, Campeche y Peninsula de Yucatan. Bol. Assoc. Mex. Geol. Petrol. 2, 453–160 (1950).

    Google Scholar 

  • Weismann, P. The cometary impact flux at the Earth. Geol. Soc. Am., Spec. Pap. 247, 171–180 (1990).

    Google Scholar 

  • Wood, C. A. and Head, J. W Comparison of impact basins on Mercury, Mars and the Moon. Proc. Lunar Sei. Conf. 7, 3629–3651 (1976).

    ADS  Google Scholar 

  • Yabushita, S. Periodicity and decay of craters over the past 600 Myr. Earth, Moon, Planets 58, 57–63 (1992).

    Article  ADS  Google Scholar 

  • Xu, D. Y, Ma, S. L., Chai, Z. F., Mao, X. Y, Sun, Y. Y, Zhang, Q. W, and Yang, Z. Z. Abundance varia-tion of iridium and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature 314, 154–156(1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grieve, R.A.F. (2001). The Terrestrial Cratering Record. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics