The Earth is the most endogenically active of the terrestrial planets and thus, has retained the poorest sample of impacts that have occurred throughout geologic time. The current known sample consists of approximately 160 impact structures or crater fields and 20 impact events also registered as depositional events in the stratigraphie record, some of which are related to known structures. The sample is biased towards young (<200 Ma) large (>20 km diameter) impact structures on the geologically better know cratonic areas. The known terrestrial impact record is sufficient to estimate a terrestrial cratering rate for the last few hundred million years. The present resolution of the record, however, does not unequivocally support suggestions of periodic impacts. Approximately 30% of known impact structures are buried and were initially detected as geophysical anomalies and subsequently drilled to provide geologic samples. The recognition of terrestrial impact structures may, or may not, come from the discovery of an anomalous quasi-circular topographic, geologic or geophysical feature. In the geologically active terrestrial environment, anomalous quasi-circular features, however, do not automatically equate with an impact origin. Specific samples must be acquired and the occurrence of shock metamorphism or, in the case of small craters, meteoritic fragments, must be demonstrated before an impact origin can be confirmed. Terrestrial impact structures result in unusual local geologic conditions, which can lead to the concentration of natural resources, such as minerals and hydrocarbons; in some cases, the economic deposits are world-class. Impact represents a long-term hazard to human civilization and is responsible for at least, one mass extinction of the biosphere, at the Cretaceous-Tertiary boundary 65 Ma.


Impact Crater Impact Structure Impact Origin Target Rock Chicxulub Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, W. and Muller, R. Evidence from crater ages of periodic impact on the Earth. Nature 308, 712–720(1984).ADSCrossRefGoogle Scholar
  2. Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  3. Baski, A. K. Search for periodicity in global events in the geologic record: Quo vadimus? Geology 18, 983–986 (1990).ADSCrossRefGoogle Scholar
  4. Bohor, B., Foord, E. E., Modreski, P. X, and Triplehorn, D. M. Mineralogie evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224, 867–869 (1984).ADSCrossRefGoogle Scholar
  5. Chao, E. C. T., Fahey, J. X, Littler, X, and Milton, D. J. Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J. Geophys. Res. 67, 419–421 (1962).ADSCrossRefGoogle Scholar
  6. Corner, B., Reimold, W. U., Brandt, D., and Koeberl, C. Morokweng impact structure, Northwest Province, South Africa: Geophysical imaging and shock pétrographie studies. Earth Planet. Sci. Lett. 146, 351–364(1997).ADSCrossRefGoogle Scholar
  7. Davis, M., Hut, P., and Muller, R. A. Extinction of species by cometary showers. Nature 308,715–717, (1984).ADSCrossRefGoogle Scholar
  8. Dietz, R. S. Vredefort ring structure: Meteorite impact scar. J. Geol. 70, 502–504 (1961).ADSCrossRefGoogle Scholar
  9. Dietz, R. S. Shatter cones in cryptoexplosion structures. In Shock metamorphism of natural materials (French, B. M. and Short, N. M.,Eds.), Mono, Baltimore, 267–285 (1968).Google Scholar
  10. Dence, M. R. The nature and significance of terrestrial impact structures. 24th Intl. Geol. Congr., Section 15, 77–89 (1972).Google Scholar
  11. Donofrio, R. R. Ames structure in northwest Oklahoma and similar features: Origin and petroleum pro-duction. Oklahoma Geol. Sur. Cire. 100, 17–29 (1977).Google Scholar
  12. Engelhardt, W. von. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany-a review. Tectonophysics 171, 259–273 (1990).ADSCrossRefGoogle Scholar
  13. Faggart, B. E., Basu, A. R., and Tatsumoto, M. Origin of the Sudbury complex by meteoritic impact: Neodymium isotopic evidence. Science 230, 436–439 (1985).ADSCrossRefGoogle Scholar
  14. Floran, R. J. and Dence, M. R. Morphology of the Manicouagan ring-structure, Quebec, and some comparisons with lunar basins and craters. Proc. Lunar Sci. Conf. 7, 2845–2865 (1976).ADSGoogle Scholar
  15. French, B. and Short, N. M. (Eds.) Shock metamorphism of natural materials. Mono, Baltimore, 644 pp. (1968).Google Scholar
  16. French, B., Koeberl, C, Gilmour, I., Shirey, S. B., Dons, J. A., and Naterstad, J. The Gardnos impact struc-ture, Norway: Petrology and geochemistry of target rock and impactites. Geochim. Cosmochim. Acta 61,873–904(1997).ADSCrossRefGoogle Scholar
  17. Garvin, J. B. and Schnetzler, C. C. The Zhamanshin impact feature: A new class of complex crater? Geol. Soc. Am., Spec. Pap. 293, 249–257 (1994).Google Scholar
  18. Gehreis, T. (Ed.) Hazards due to cornets and asteroids. Univ. Arizona Press, Tuscon, 1300 pp. (1994).Google Scholar
  19. Gostin, V. A. and Therriault, A. M. Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwest Queensland, Australia. Meteor. Planet. Sci. 32, 593–599 (1997).ADSCrossRefGoogle Scholar
  20. Grieve, R. A. F. Terrestrial impact structures: Basic characteristics and economic significance, with special emphasis on hydrocarbon production. In Ames structure in northwest Oklahoma and similar features: Origin and petroleum production (Johnson, K. S. and Campbell, J. A., Eds.), Oklahoma Geol. Sur. Cire. 100,3–16(1997).Google Scholar
  21. Grieve, R. A. F. and Head, J. W. The Manicouagan impact structure: An analysis of its original dimensions and form. J. Geophys. Res. 88, A807–A818 (1983).ADSCrossRefGoogle Scholar
  22. Grieve, R. A. F. and Pesonen, L. J. Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies. Earth, Moon, Planets 72, 357–376 (1996).ADSCrossRefGoogle Scholar
  23. Grieve, R. A. F. and Masaitis, V. L. The economic potential of terrestrial impact craters. Intl. Geol. Rev. 36, 105–151 (1994).CrossRefGoogle Scholar
  24. Grieve, R. A. F. and Pilkington, M. The signature of terrestrial impacts. AGSO J. Austral. Geol. Geophys. 16, 399–420 (1996).Google Scholar
  25. Grieve, R. A. F. and Shoemaker, E. M. The record of past impacts on Earth. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tuscon, 417–462 (1994).Google Scholar
  26. Grieve, R. A. F. and Therriault, A. M. Vredefort, Sudbury, Chicxulub: Three of a kind? Annu. Rev. Earth Planet. Sci. 28, 305–338 (2000).ADSCrossRefGoogle Scholar
  27. Grieve, R. A. F., Kreis, L. K., and Therriault, A. M. Impact structures of the western sedimentary basin of North America: New discoveries and hydrocarbon resources. In Eigth international Williston Basin symposium (Christopher, J. E., Gilboy, C. F., Paterson, D. F., and Bend, S. L., Eds.), Sask. Geol. Soc, Spec. Publ. 13, 189–201 (1998).Google Scholar
  28. Grieve, R. A. F, Dence, M. R., and Robertson, P. B. Cratering processes: As interpreted from the occur-rence of impact melts. In Impact and explosion cratering (Roddy, D. J., Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 791–814 (1977).Google Scholar
  29. Grieve, R. A. F., Langenhorst, F., and Stöffler, D. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteor. Planet. Sci. 31, 6–35 (1996).ADSCrossRefGoogle Scholar
  30. Grieve, R. A. F., Sharpton, V. L., Rupert, J. B., and Goodacre, A. K. Detecting a periodic signal in the ter-restrial cratering record. Proc. Lunar Planet. Sci. Conf. 18, 375–382 (1988).ADSGoogle Scholar
  31. Gudlaugsson, S. T. Large impact crater in the Barents Sea. Geology 21, 291–294 (1993).ADSCrossRefGoogle Scholar
  32. Haines, P. W. Goyder impact structure, Arnhem Land, Northern Territory. AGSO J. Austral. Geol. Geophys. 16, 561–566 (1996).Google Scholar
  33. Hartmann, W. K. Planetary Cratering I: Lunar highlands and tests of hypothesis on crater populations. Meteor. Planet. Sci. 30, 451–467 (1995).Google Scholar
  34. Henkel, H. H. Geophysical aspects of impact craters in eroded shield environments, with special emphasis on electric resistivity. Tectonophysics 216, 63–90 (1992).ADSCrossRefGoogle Scholar
  35. Heisler, J. and Tremaine, S. How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77, 213–219 (1989).ADSCrossRefGoogle Scholar
  36. Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, A. Z., Jacobsen, S. B., and Boynton, W. V Chicxulub crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19, 867–871 (1991).ADSCrossRefGoogle Scholar
  37. Hörz, F Statistical measurements of deformation structures and refractive indices in experimentally shock-heated quartz. In Shock metamorphism of natural materials (French, B. M. and Short, N. M., Eds.), Mono, Baltimore, 243–253 (1968).Google Scholar
  38. Jahn, B., Floran, R. J., and Simonds, C. H. Rb-Sr isochron age of the Manicouagan melt sheet, Quebec, Canada. J. Geophys. Res. 83, 2799–2803 (1978).ADSCrossRefGoogle Scholar
  39. Jetsu, L. and Pelt, J. Spurious periods in the terrestrial impact record. Astron. Astrophys. 353, 409–418 (2000).ADSGoogle Scholar
  40. Koeberl, C, Shirey, S. B., and Reimold, W. U. Re-Os isotope systematics as a diagnostic tool for the study of impact craters. Lnar Planet. Inst. Contrib. 825, 61–63 (1994).ADSGoogle Scholar
  41. Koeberl, C, Reimold, W. V, and Shirey, S. B. Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology 24, 913–916 (1996).ADSCrossRefGoogle Scholar
  42. Kyte, F. T., Zhou, Z., and Wasson, J. T. New evidence on the size and possible effects of a late Pliocene oceanic asteroid impact. Science 241, 63–65 (1988).ADSCrossRefGoogle Scholar
  43. Lehtovaara, J. J. Söderfjärden: A Cambrian impact crater in western Finland. Tectonophysics 216, 157–161 (1992).ADSCrossRefGoogle Scholar
  44. Lindström, M. and Sturkell, E. F. F. Geology of the early Paleozoic Lockne impact structure, central Sweden. Tectonophysics 216, 169–185 (1992).ADSCrossRefGoogle Scholar
  45. Masaitis, V L. Popigai crater: Origin and distribution of diamond-bearing impactites. Meteor. Planet. Sci. 33,349–359(1998).ADSCrossRefGoogle Scholar
  46. Melosh, H. J. Atmospheric breakup of terrestrial impactors. In Multi-ring basins (Schultz, P. H. and Merrill, P. B., Eds.), Pergamon, New York, 29–35 (1981).Google Scholar
  47. Melosh, H. J. Impact cratering: A geologic process. Oxford Univ. Press, New York, 245 pp. (1989).Google Scholar
  48. Milton, D. J. Shatter cones-an outstanding problem in cratering mechanics? In Impact and explosion cra-tering (Roddy, D. I, Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 703–714 (1977).Google Scholar
  49. Milton, D. X, Glikson, A. Y, and Brett, R. Gosses Bluff-a latest Jurassic impact structure central Australia. Part 1: geological structure, stratigraphy and origin. AGSO J. Austral. Geol. Geophys. 16, 453–486(1996).Google Scholar
  50. Morgan, J. and Warner, M. Chicxulub: The third dimension of a multi-ring impact basin. Geology 27, 407–410(1999)ADSCrossRefGoogle Scholar
  51. Orth, C. J., Attrep, M. I, and Quintana, L. R. Iridium abundance patterns across bio-event horizons in the fossil record. Geol. Soc. Am., Spec. Pap. 247, 45–60 (1990).Google Scholar
  52. Neukum, G. and Ivanov, B. A. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 359–416 (1994).Google Scholar
  53. Palme, H. Identification of some projectiles of large terrestrial impact craters and implications for the inter-pretation of Ir-rich Cretaceous-Tertiary boundary layers. Geol. Soc. Am., Spec. Pap. 190, 223–233 (1982).Google Scholar
  54. Palme, H., Goebel, E., and Grieve, R. A. F. The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec). Proc. Lunar Planet. Sci. Conf. 10, 2465–2492 (1979).ADSGoogle Scholar
  55. Palme, H., Grieve, R. A. E, and Wolf, R. Identification of the projectile at Brent crater, and further con-siderations of projectile types at terrestrial craters. Geochim. Cosmochim. Acta 45, 2417–2424 (1981).ADSCrossRefGoogle Scholar
  56. Penfield, G. T. and Camargo, A. Z. Definition of a major igneous zone in the central Yucatan platform with aeromagnetics and gravity (abst.). Soc. Explor. Geophys. 51st Annu. Mtg., 37 (1981).Google Scholar
  57. Pike, R. J. Formation of complex impact craters: Evidence from Mars and other planets. Icarus 43, 1–19 (1980).ADSCrossRefGoogle Scholar
  58. Poag, C. W, Powars, D. S., Poppe, L. J., Mixon, R. B. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field. Geology 22, 691–694 (1994).ADSCrossRefGoogle Scholar
  59. Rampino, M. R. and Stothers, R. B. Geological rhythms and cometary impacts. Science 226, 1427–1431 (1984).ADSCrossRefGoogle Scholar
  60. Rampino, M. R. and Haggerty, B. M. Extraterrestrial impact and the extinction of life. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 827–858 (1994).Google Scholar
  61. Rampino, M. R. and Haggerty, B. M. The’ shiva hypothesis:’ Impacts, mass extinctions and the galaxy. Earth, Moon, Planets 72, 441–460 (1996).ADSCrossRefGoogle Scholar
  62. Raup, D. M. and Sepkoski, J. J. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. 81, 801–805 (1984).ADSCrossRefGoogle Scholar
  63. Robertson, P. B. and Sweeney, J. F. Haughton impact structure: Structural and morphological aspects. Can. J. Earth Sci. 20, 1134–1151 (1983).ADSCrossRefGoogle Scholar
  64. Roddy, D. J. and Davis, L. K. Shatter cones formed in large experimental explosion craters. In Impact and explosion cratering (Roddy, D. X, Pepin, R. O., and Merrill, R. B., Eds.), Pergamon, New York, 715–750(1977).Google Scholar
  65. Roddy, D. I, Pepin, R. O., and Merrill, R. B. (Eds.) Impact and explosion cratering. Pergamon, New York, 1301 pp. (1977).Google Scholar
  66. Sharpton, V L., Burke, K.., Camargo-Zanoguera, A., Hall, S. A., Lee, D. S., Marin, L. E., Suarez-Reynoso, G., Quezaela-Muneton, J. M., Spudis, P. D., and Urrita-Fucugauchi, J. Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science 261, 1564–1567 (1993).ADSCrossRefGoogle Scholar
  67. Shoemaker, E. M. and Shoemaker, C. S. The Proterozoic impact record of Australia. AGSOJ. Austral. Geol. Geophys. 16, 379–398 (1996).Google Scholar
  68. Simpson, C. The structure of the rim syndinorium of the Vredefort Dome. Trans. Geol. Soc. S. Afr. 81, 115–121 (1978).Google Scholar
  69. Smit, J. and Hertogen, J. An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285, 158–200(1980).CrossRefGoogle Scholar
  70. Snyder, D., Hobbs, R. W., and the Chicxulub Working Group. Ringed structural zones with deep roots formed by the Chicxulub impact. J. Geophys. Res. 104, 743–755 (1999).CrossRefGoogle Scholar
  71. Spray, J. G. and Thompson, L. M. Friction melt distribution in terrestrial multi-ring impact basins. Nature 373, 130–132 (1995).ADSCrossRefGoogle Scholar
  72. Spudis, P. D. The Geology of multi-ring impact basins. Cambridge Univ. Press, Cambridge (1993).CrossRefGoogle Scholar
  73. Stöffler, D. Progressive metamorphism and classification of shocked and brecciated crystalline rocks in impact craters. J. Geophys. Res. 76, 5541–5551 (1971).ADSCrossRefGoogle Scholar
  74. Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschr. Mineral. 49, 50–113 (1972).Google Scholar
  75. Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. II. Physical properties of shocked minerals. Fortschr. Mineral. 51, 256–289 (1974).Google Scholar
  76. Stöffler, D. and Hornemann, U. Quartz and feldspar glasses produced by natural and experimental shock. Meteoritics 7, 371–394 (1972).ADSGoogle Scholar
  77. Stöffler, D. and Langenhorst, F. Shock metamorphism of quartz in nature and experiment: I. Basic obser-vation and theory. Meteoritics 29, 155–181 (1994).ADSGoogle Scholar
  78. Stöffler, D., Deutsch, A., Avermann, M., Bischoff, L., Brockmeyer, P., Buhl, D., Lakomy, R., and Müller-Mohr, V Geol. Soc. Am., Spec. Pap. 293,303–318(1994).Google Scholar
  79. Stothers, R. B. Impact cratering at geologic stage boundaries. Geophys. Res. Lett. 20, 887–890 (1993).ADSCrossRefGoogle Scholar
  80. Stothers, R. B. and Rampino, M. R. Periodicity in flood basalts, mass extinctions, and impacts: A statisti-cal view and a model. Geol. Soc. Am., Spec. Pap. 247, 9–18 (1990).Google Scholar
  81. Therriault, A. M. and Lindström, M. Planar deformation features in quartz grains from the resurge deposit of the Lockne structure, Sweden. The formation of the Sudbury structure: Toward a unified impact model. Meteor. Planet. Sci. 30, 700–703 (1995).Google Scholar
  82. Therriault, A. M., Grieve, R. A. F, and Reimold, W. U. Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin. Meteor. Planet. Sci. 32, 71–77 (1997).ADSCrossRefGoogle Scholar
  83. Therriault, A. M., Reimold, W. U., and Reid, A. M. Field relations and petrography of the Vredefort Granophyre. S. Afr. J. Geol. 1, 1–21 (1996).Google Scholar
  84. Toledo, A. C. and Osuna, A. Ft. Las anomalies gravimetricas en le cuena salina del istma, planicie costera de Tabasco, Campeche y Peninsula de Yucatan. Bol. Assoc. Mex. Geol. Petrol. 2, 453–160 (1950).Google Scholar
  85. Weismann, P. The cometary impact flux at the Earth. Geol. Soc. Am., Spec. Pap. 247, 171–180 (1990).Google Scholar
  86. Wood, C. A. and Head, J. W Comparison of impact basins on Mercury, Mars and the Moon. Proc. Lunar Sei. Conf. 7, 3629–3651 (1976).ADSGoogle Scholar
  87. Yabushita, S. Periodicity and decay of craters over the past 600 Myr. Earth, Moon, Planets 58, 57–63 (1992).ADSCrossRefGoogle Scholar
  88. Xu, D. Y, Ma, S. L., Chai, Z. F., Mao, X. Y, Sun, Y. Y, Zhang, Q. W, and Yang, Z. Z. Abundance varia-tion of iridium and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature 314, 154–156(1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Richard A. F. Grieve
    • 1
  1. 1.Earth Sciences SectorNatural Resources CanadaOttawaCanada

Personalised recommendations