By 1992 only about half a dozen fossil meteorites had been found in the Earth’s entire geological record. This is a very low number considering the vast surface of exposed sedimentary rock visually examined during geological field work and industrial quarrying in the 20th century. In the first systematic fossil meteorite search, pursued 1992–2000 in the active Thorsberg quarry in Lower Ordovician marine limestone in southern Sweden, 35 additional fossil meteorites have been found. These meteorites, 1-20 cm in cross section, accumulated over ∼ 1.75 Myr, over a seafloor area of ∼5500 m2, making this one of the most meteorite-dense areas known in the world. Studies of the distribution of fossil meteorites and their relict minerals in geological strata can provide new knowledge about variations in meteorite influx and major asteroid breakup events in the asteroid belt throughout solar system history.


Carbonaceous Chondrite Iron Meteorite Ordinary Chondrite Asteroid Belt Fall Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, L. W., Alvarez, W., Asaro, E, and Michel, H. Y Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  2. Anonymous. Notes. Nature 103, 19 (1919).Google Scholar
  3. Bunch, T. E., Keil, K., and Snetsinger, K. G. Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Acta 31, 1569–1582 (1967).ADSCrossRefGoogle Scholar
  4. Gold, D. P., Sicree, A. A., and Hoover, K. A strategy for the search and recovery of fossil iron meteorites in sedimentary rocks. Meteor. Planet. Sci. 34, A44 (1999).Google Scholar
  5. Haack, H., Farinella, P., Scott, E. R. D., and Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996).ADSCrossRefGoogle Scholar
  6. Halliday, I., Blackwell, A. T., and Griffin, A. A. The flux of meteorites on the Earth’s surface.Meteoritics 24, 173–178 (1989).ADSGoogle Scholar
  7. Halliday, I., Blackwell, A. T., and Griffin, A. A. The frequency of meteorite falls: Comments on two con-flicting solutions to the problem. Meteoritics 26, 243–249, 1991.ADSGoogle Scholar
  8. Harland, W. B., Armstrong, R. L., Cox, A. V, Craig, L. E., Smith, A. G., and Smith, D. G. A geologic timescale 1989. Cambridge Univ. Press, Cambridge, 263 pp. (1989).Google Scholar
  9. Henderson, E. P. and Cooke, C. W. The Sardis (Georgia) meteorite. Proc. U. S. Natl. Museum 92, 141–150 (1942).CrossRefGoogle Scholar
  10. Hofmann, B. A., Nyström, J. O., and Krähenbühl, U. The Ordovician chondrite from Brunflo, central Sweden: III. Geochemistry of terrestrial alteration. Lihos 50, 305–324 (2000).ADSGoogle Scholar
  11. Kyte, F. T. A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237–239 (1998).ADSCrossRefGoogle Scholar
  12. Lindström, M. Vom Anfang, Hochstand und Ende eines Epikontinentalmeeres. Geol. Rdsch. 60, 419–438 (1971).CrossRefGoogle Scholar
  13. Lugmair, G. W. and Shukolyukov, A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998).ADSCrossRefGoogle Scholar
  14. Löfgren, A. Arenigian and Llanvirnian conodonts from Jämtland, northern Sweden. Fossils and Strata 13, 1–129 (1978).Google Scholar
  15. Lovering, J. F. Frequency of meteorite falls throughout the ages. Nature 183, 1664–1665 (1959).ADSCrossRefGoogle Scholar
  16. Mason, B. Meteorites. Wiley, New York, 274 pp. (1962).Google Scholar
  17. Meisel, T., Walker, R., and Morgan, J. W. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520 (1996).ADSCrossRefGoogle Scholar
  18. Nininger, H. H. Notes on oxidation of certain meteorites: The formation of meteoroides. Trans. Kansas Acad. Sci. 32, 63–67 (1929).CrossRefGoogle Scholar
  19. Nininger, H. H. Find a falling star. Paul S. Eriksson, New York, 254 pp. (1972).Google Scholar
  20. Nyström, J. O. and Wickman, F. E. The Ordovician chondrite from Brunflo, central Sweden: II. Secondary minerals. Lihos 27, 167–185 (1991).ADSGoogle Scholar
  21. Nyström, J. O., Lindström, M., and Wickman, F. E. Discovery of a second Ordovician meteorite using chromite as a tracer. Nature 336, 572–574 (1988).ADSCrossRefGoogle Scholar
  22. Paneth, F. A. Vistas in astronomy. Pergamon, London (1956).Google Scholar
  23. Patterson, D. B., Farley, K. A., and Schmitz, B. Preservation of extraterrestrial 3He in 480-Ma-old marine limestones. Earth Planet. Sci. Lett. 163, 315–325 (1998).ADSCrossRefGoogle Scholar
  24. Petterson, H. Frequency of meteorite falls throughout the ages. Nature 183, 1114 (1959).ADSCrossRefGoogle Scholar
  25. Schmitz, B., Lindström, M., Asaro, F., and Tassinari, M. Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden. Earth Planet. Sci. Lett. 145,31–48(1996).ADSCrossRefGoogle Scholar
  26. Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M., and Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997).ADSCrossRefGoogle Scholar
  27. Schwinner, R. Meteoriten und Geologie. Gerlands Beitr. Geophys. 16, 195–222 (1927).Google Scholar
  28. Sicree, A. A., Gold, D. P., and Hoover, K. Potential for preservation and recovery of fossil iron meteorites from coal, trona, limestone, and other sedimentary rocks. Meteor. Planet. Sci. 32, A121 (1997).Google Scholar
  29. Thorslund, P. and Wickman, F. E. Middle Ordovician chondrite in fossiliferous limestone from Brunflo, central Sweden. Nature 289, 285–286 (1981).ADSCrossRefGoogle Scholar
  30. Thorslund, P., Wickman, F. E., and Nyström, J. O. The Ordovician chondrite from Brunflo, central Sweden: I. General description and primary minerals. Lithos 17, 87–100 (1984).ADSCrossRefGoogle Scholar
  31. Yudin, I. A., Relict structures of stony meteorites in a Mesozoic formation of the central Urals. Meteoritics 6,99–103 (1971).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Birger Schmitz
    • 1
  • Mario Tassinari
    • 2
  1. 1.Marine GeologyEarth Sciences CenterGöteborgSweden
  2. 2.Paleo Geology CenterVäner MuseumLidköpingSweden

Personalised recommendations