Skip to main content

Abstract

The time since fall of a meteorite is an important parameter in the study of infall rates, meteorite distributions, weathering of meteorites and meteorite concentration mechanisms. Stony meteorites can weather quickly in humid environments, but the large numbers of meteorites found in semi-arid and arid environments suggest much longer survival times. Meteorites can survive in deserts for at least 50 kyr. Similarly, the cold and dry conditions of polar regions such as Antarctica have proved to be great stores of meteorites. Meteorites in Antarctica show an older terrestrial age distribution than for wanner locations. A few types of meteorites have been found in Antarctica with ages of up to 2 Ma. In this paper, I discuss the terrestrial residence times or terrestrial ages of these meteorites. I will also discuss the wide range of terrestrial ages from different environments, which show the effects of local effects on the storage of meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aylmer, D., Bonnano, V, Herzog, G. F., Klein, X, and Middleton, R. 26A1 and l0Be production in iron meteorites. Earth Planet. Sci. Lett. 88, 107 (1988).

    Article  ADS  Google Scholar 

  • Bada, J. L., Glavin, D. P., McDonald, G. D., and Becker, L. A search for endogenous amino acids in the Martian meteorite, ALH84001. Science 279, 362–365 (1998).

    Article  ADS  Google Scholar 

  • Begemann, E, Rieder, R., Vilcsek, E., and Wanke, H. Cosmic-ray produced radionuclides in the Barwell and Saint-Séverin meteorites. InMeteorite research (Millman, P., Ed.), Reidel, Dordrecht, 267–274 (1969).

    Chapter  Google Scholar 

  • Begemann, F. and Vilcsek, E. Chlorine-36 and Argon-39 production rates in the metal of stone and stony-iron meteorites. In Meteorite research (Millman, P., Ed.), Reidel, Dordrecht, 355–362 (1969).

    Chapter  Google Scholar 

  • Benoit, P. H., Jull, A. J. T., McKeever, S. W. S., and Sears, D. W. G. The natural thermoluminescence of meteorites VI: Carbon-14, thermoluminescence and the terrestrial ages of meteorites. Meteoritics 28, 196–203 (1993).

    ADS  Google Scholar 

  • Beukens, R. P., Rucklidge, J. C, and Miura, Y. 14C ages of Yamato and Allan Hills meteorites. Proc. NIPR Symp. Antarc. Meteor. 1, 224–230 (1988).

    Google Scholar 

  • Bevan, A. W. R. and Binns, R. A. Meteorites from the Nullarbor Region, Western Australia: I. A review of past recoveries and a procedure for naming new finds. Meteoritics 24, 127–133 (1989a).

    ADS  Google Scholar 

  • Bevan, A. W R. and Binns, R. A. Meteorites from the Nullarbor Region, Western Australia: II. Recovery and classification of 34 new meteorite finds from the Mundrabilla, Forrest, Reid, and Deakin areas. Meteoritics 24, 134–141 (1989b).

    ADS  Google Scholar 

  • Bevan, A. W. R, Bland, P. A., and Jull, A. J. T. Meteorite flux on the Nullarbor Region, Australia. Geol. Soc. Land., Spec. Publ. 140, 59–73 (1998)

    Article  ADS  Google Scholar 

  • Bland, P. A, Smith, T. B., Jull, A. J. T., Berry, F. I, Bevan, A. W R., Cloudt, S., and Pillinger, C. T. The flux of meteorites to the Earth over the last 50,000 years. Mon. Not. R. Astron. Soc. 283, 551–565 (1996).

    ADS  Google Scholar 

  • Bland, P. A., Sexton, A. S., Jull, A. J. T., Bevan, A. W. R., Berry, F. I, Thomiey, D. M., Astin, T. R., Britt, D. T., and Pillinger, C. T. Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochim. Cosmochim. Acta 62, 3169–3184 (1998).

    Article  ADS  Google Scholar 

  • Bland, P. A., Bevan, A. W. R., and Jull, A. J. T. Ancient meteorite finds and the Earth’s surface environment. Quaternary Res. 53, 131–142 (2000).

    Article  ADS  Google Scholar 

  • Boeckl, R. S. A depth profile of 14C in lunar rock 12002. Earth Planet. Sci. Lett. 16, 269–272 (1972).

    Article  ADS  Google Scholar 

  • Brown, R. M., Andrews, H. R., Ball, G. C, Burn, N., Imahori, Y, Milton, J. C. D., and Fireman, E. L. 14C content of ten meteorites measured by tandem accelerator mass spectrometry. Earth Planet. Sci.Lett. 67, 1–8 (1984).

    Article  ADS  Google Scholar 

  • Burns, R. G., Burbine, T. H., Fisher, D. S., and Binzel, R. P. Weathering in Antarctic H and CR chondrites: Quantitative analysis through Mössbauer spectroscopy. Meteoritics 30, 625–633 (1995).

    ADS  Google Scholar 

  • Chang, C. and Wanke, H. Beryllium-10 in iron meteorites: Their cosmic-ray exposure and terrestrial ages. In Meteorite research (Millman, P., Ed.), Reidel, Dordrecht, 397–406 (1969).

    Chapter  Google Scholar 

  • Cresswell, R. G., Miura, Y, Beukens, R. P., and Rucklidge, J. C. 14C terrestrial ages of nine Antarctic mete-orites using CO and CO2 temperature extractions. Proc. NIPR Symp. Antarc. Meteor. 6, 381–390 (1993).

    Google Scholar 

  • Cressy, P. J. and Bogard, D. D. Calculation of cosmic ray exposure ages of stone meteorites. Geochim. Cosmochim. Acta 40, 749–762 (1976).

    Article  ADS  Google Scholar 

  • Drewry, D. Entrainment, transport, and concentration of meteorites in polar ice sheets. Lunar Planet. Inst. Techn. Rept. 86-01, 37–47 (1986)

    ADS  Google Scholar 

  • Evans, J. C. and Rancitelli, L. A. Terrestrial ages. Smithson. Contrib. Earth Sci. 23, 45–416 (1979)

    ADS  Google Scholar 

  • Evans, J. C, Reeves, J. H., and Rancitelli, L. A. Aluminum-26: Survey of Victoria Land meteorites. Smithson. Contrib. Earth Sci. 24, 70–74 (1982).

    Google Scholar 

  • Evans, X, Wacker, J., and Reeves, J. Terrestrial ages of Victoria Land meteorites derived from cosmogenic radionuclides. Smithson. Contrib. Earth Sci. 30, 45–56 (1992).

    Google Scholar 

  • Eugster, O. Cosmic-ray production rates for He-3, Ne-21, Ar-38, Kr-83, and Xe-126 in chondrites based on 81Kr-Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).

    Article  ADS  Google Scholar 

  • Eugster, O., Michel, T., Niedermann, S., Wang, D., and Yi, W. The record of cosmogenic, radiogenic, fis-sionogenic and trapped noble gases in recently recovered Chinese and other chondrites. Geochim. Cosmochim. Acta 57, 1115–1142 (1993).

    Article  ADS  Google Scholar 

  • Eugster, O., Weigel, A., and Polnau, E. Ejection times of Martian meteorites. Geochim. Cosmochim. Acta 61,2749–2757(1997).

    Article  ADS  Google Scholar 

  • Fink, D., Klein, J., Middleton. R., Vogt, S., and Herzog, G. F. Ca-41 in iron falls, Grant and Estherville pro-duction rates and related exposure age calculations. Earth Planet. Sci. Lett. 107, 115–128 (1991).

    Article  ADS  Google Scholar 

  • Fireman, E. L. Carbon-14 in lunar soil and in meteorites. Proc. Lunar Planet. Sci. Conf. 10, 1647–1654 (1978).

    ADS  Google Scholar 

  • Fireman, E. L. and Norris, T. L. Carbon-14 ages of Allan Hills meteorites and ice. Proc. Lunar Planet. Sci. Conf. 10, 1019–1025(1981).

    ADS  Google Scholar 

  • Franchi, I. A., Delisle, G., Jull, A. J. T., Hutchison, R., and Pilling, C. T. An evaluation of the meteorite potential of the Jiddat al Harasis and the Rub al Khali regions of southern Arabia. Lunar Planet. Inst. Techn. Rept. 95-02, 29–30 (1995).

    Google Scholar 

  • Freundel, M., Schultz, L., and Reedy, R. C. Terrestrial 81Kr-Kr ages of Antarctic meteorites. Geochim. Cosmochim. Acta 50, 2663–2673 (1986).

    Article  ADS  Google Scholar 

  • Goel, P. S. and Kohman, T. L. Cosmogenic carbon-14 in meteorites and terrestrial ages of ‘finds’ and craters. Science 136, 875–876 (1962).

    Article  ADS  Google Scholar 

  • Goel, P. S. and Honda, M. Cosmic-ray-produced iron 60 in Odessa meteorite. J. Geophys. Res. 70, 747–748 (1965).

    Article  ADS  Google Scholar 

  • Gooding, J. L., Wentworth, S. J., and Zolensky, M. Calcium-carbonate and sulfate of possible extraterrestrial origin in the EETA79001 meteorite. Geochim. Cosmochim. Acta 52, 909–915 (1988).

    Article  ADS  Google Scholar 

  • Graf, T., Baur, H., and Signer, P. A model for the production of cosmogenic nuclides in chondrites. Geochim. Cosmochim. Acta 54, 2521–2534 (1990a).

    Article  ADS  Google Scholar 

  • Graf, T., Signer, P., Wieler, R., Herpers, U, Sarafin, R., Vogt, S., Fieni, Ch., Bonani, G., Suter, M., and Wölfli, W. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54, 2511–2520 (1990b).

    Article  ADS  Google Scholar 

  • Grossman, J. The U. S. Antarctic Meteorite Collection. Meteoritics 29, 100–143 (1994).

    ADS  Google Scholar 

  • Halliday, I., Blackwell, A. T., and Griffin, A. A. The flux of meteorites on the Earth’s surface. Meteoritics 24, 173–178(1989).

    ADS  Google Scholar 

  • Herzog, G. F., Vogt, S., Albrecht, A., Xue, S., Fink, D., Klein, J., Middleton, R., Weber, H. W, and Schultz, L. Complex exposure histories for meteorites with “short” exposure ages. Meteor. Planet. Sci. 32, 413–422(1997).

    Article  ADS  Google Scholar 

  • Huss, G. R. Meteorite infall as a function of mass: Implications for the accumulation of meteorites on Antarctic ice. Meteoritics 25, 41–56 (1990).

    ADS  Google Scholar 

  • Jull, A. J. T., Donahue, D. J., Zabel, T. H., and Fireman, E. L. Carbon-14 ages of Antarctic meteorites with accelerator and small-volume counter techniques. J. Geophys. Res. 89, C329–335 (1984).

    Article  ADS  Google Scholar 

  • Jull, A. J. T, Donahue, D. J., and Linick, T. W. Carbon-14 activities in recently-fallen meteorites and Antarctic meteorites. Geochim. Cosmochim. Acta 53, 1295–1300(1989).

    Article  Google Scholar 

  • Jull, A. J. T., Wlotzka, F., Palme, H., and Donahue, D. J. Distribution of terrestrial age and petrologic type of meteorites from western Libya. Geochim. Cosmochim. Acta 54, 2895–2899 (1990).

    Article  ADS  Google Scholar 

  • Jull, A. J. T., Wlotzka, F., and Donahue, D. J. Terrestrial ages and petrologic description of Roosevelt County meteorites. Lunar Planet. Sci. 22, 667–668 (1991).

    ADS  Google Scholar 

  • Jull, A. J. T., Donahue, D. J., Cielaszyk, E., and Wlotzka, F. Carbon-14 terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28, 188–195 (1993a).

    ADS  Google Scholar 

  • Jull, A. J. T., Miura, Y., Cielaszyk, E., Donahue, D. J., and Yanai, K. AMS 14C ages of Yamato achondritic meteorites. Proc. NIPR Symp. Antarc. Meteor. 6, 374–380, National Institute of Polar Research, Tokyo (1993b).

    Google Scholar 

  • Jull, A. J. T., Donahue, D. I, Reedy, R. C, and Masarik J. A carbon-14 depth profile in the L5 chondrite Knyahinya. Meteoritics 29, 649–738 (1994).

    ADS  Google Scholar 

  • Jull, A. J. T., Bevan, A. W. R., Cielaszyk, E., and Donahue, D. J. Carbon-14 terrestrial ages and weathering of meteorites from the Nullarbor Plain, Western Australia. Lunar Planet. Inst. Techn. Rept. 95-02, 37–38(1995).

    Google Scholar 

  • Jull, A. J. T, Eastoe, C. J., and Cloudt, S. Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami. J. Geophy. Res. 102, 1663–1669 (1997).

    Article  ADS  Google Scholar 

  • Jull, A. J. T., Cielaszyk, E., and Cloudt, S. 14C terrestrial ages of meteorites from Victoria Land, Antarctica and the infall rates of meteorites. Geol. Soc. Lond., Spec. Pub. 140, 75–91 (1998b).

    Article  ADS  Google Scholar 

  • Jull, A. J. T, Courtney, C, Jeffrey, D. A., and Beck, J. W. Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites, Allan Hills 84001 and Elephant Moraine 79001, Science 279, 366–368 (1998a).

    Article  ADS  Google Scholar 

  • Jull, A. J. T., Klandrud, S. E., Cielaszyk, E., and Cloudt, S. Carbon-14 terrestrial ages of meteorites from the Yamato region, Antarctica.Antarc. Meteor. 24, National Institute of Polar Research, Tokyo, 62–63 (1999a).

    Google Scholar 

  • Jull, A. J. T, Bland, P. A., Klandrud, S. E., McHargue, L. R., Bevan, A. W. R., Kring, D. A., and Wlotzka, F. Using 14C and 14C-l0Be for terrestrial ages of desert meteorites. Lunar Planet. Inst. Techn. Rept. 997, (1999b).

    Google Scholar 

  • Kaye, J. H. Cosmogenic X-ray and β emitters in iron meteorites. Ph.D. thesis, Carnegie Inst. Technol., Pittsburgh (1963).

    Google Scholar 

  • Kigoshi, K. and Matsuda, E. Radiocarbon datings of Yamato meteorites. Lunar Planet. Inst. Techn. Rept. 86-01, 58–60(1986).

    ADS  Google Scholar 

  • Knauer, M., Neuper, U, Michel, R., Bonam, G., Dittrich-Hannen, B., Hajdas, I., Ivy-Ochs, S., Kubik, P. W, and Suter, M. Measurement of the long-lived radionuclides beryllium-10, carbon-14 and aluminum-26 in meteorites from hot and cold deserts by accelerator mass spectrometry (AMS). Lunar Planet. Inst. Techn. Rept. 95-02, 38–42 (1995).

    Google Scholar 

  • Knie, K., Merchel, S., Korschinek, G., Faestermann, T., Herpers, U, Gloris, M., and Michel, R. Accelerator mass spectrometer measurements and model calculations of iron-60 production rates in meteorites. Meteor. Planet. Sci. 34, 729–734 (1999).

    Article  ADS  Google Scholar 

  • Kring, D. A., Jull, A. J. T., McHargue, L. R., Hill, D. H., Cloudt, S., and Klandrud, S. E. Gold Basin meteorite strewn field: The “fossil” remnants of an asteroid that catastrophically fragmented in Earth’s atmosphere. Lunar Planet. Sci. 29, CD-ROM (1998).

    Google Scholar 

  • Kring, D. A., Jull, A. J. T, and Bland, P. A. The Gold Basin strewn field, Mojave Desert, and its survival from the late Pleistocene to the present. Lunar Planet. Inst. Techn. Rept. 997, 44–45 (1999).

    Google Scholar 

  • Kring, D. A., Jull, A. J. T, McHargue, L. R., Bland, P. A., Hill, D. A., and Berry, F. J. Gold Basin meteorite strewn field, Mojave Desert: Relict of a small late Pleistocene impact event. Meteor. Planet. Sci., in press (2000).

    Google Scholar 

  • Leya, I., Lange, H.-X, Neumann, S., Wieler, R., and Michel, R. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles. Meteor. Planet. Sci. 35, 259–286 (2000).

    Article  ADS  Google Scholar 

  • Lindström, M. M. and Score, R. Populations, pairing, and rare meteorites in the U. S. Antarctic meteorite collection. Lunar Planet. Inst. Techn. Rept. 95-02, 43–45 (1994).

    Google Scholar 

  • Lipschutz, M. Trace-element variations between Antarctic (Victoria Land) and non-Antarctic meteorites. Smithson.Contrib. Earth Sci. 28, 99–102 (1989).

    ADS  Google Scholar 

  • Marvin, U. B. Meteorite distributions at the Allan Hills Main icefield and the pairing problem. Smithson. Contrib. Earth Sci. 30, 113–119 (1992).

    Google Scholar 

  • Marvin, U. B. and Mason, B. Field and laboratory investigations of meteorites from Victoria Land, Antarctica. Smithson. Contrib. Earth Sci. 26, 1–4 (1984).

    Article  Google Scholar 

  • Marvin, U. B. and MacPherson, G. J. Field and laboratory investigations of meteorites from Victoria Land and the Thiel Mountains, Antarctica, 1982-1983 and 1983-1984. Smithson. Contrib. Earth Sci. 28, 1–3 (1989).

    Article  Google Scholar 

  • Marvin, U. B. and MacPherson, G. J. Field and laboratory investigations of Antarctic meteorites collected by United States expeditions. Smithson. Contrib. Earth Sci. 30, 1–3 (1992).

    Article  Google Scholar 

  • Mason, B. Cosmochemistry, part 1. Meteorites. USGS Prof. Pap. 440-B-l, 132 pp. (1979).

    Google Scholar 

  • McCorkell, R. H., Fireman, E. L., d’Amico, J., and Thompson, S. O. Radiometrie isotopes in Hoba West and other iron meteorites. Meteoritics 4, 113–122 (1968).

    ADS  Google Scholar 

  • McKay, D. S., Gibson, E. K., Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F, Maechling, C. R., and Zare, R. N. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996).

    Article  ADS  Google Scholar 

  • McKeever, S. W. S. Dating meteorite falls using thermoluminescence-application to Antarctic meteorites. Earth Planet. Sci. Lett. 58, 419–429 (1982).

    Article  ADS  Google Scholar 

  • Miura, Y., Nagao, K., and Fujitani, T. 81Kr terrestrial ages and grouping ofYamato eucrites based on noble-gas and chemical compositions. Geochim. Cosmochim. Acta 57, 1857–1866 (1993).

    Article  ADS  Google Scholar 

  • Michlovich, E. S., Wolf, S. F, Wang, M. S., Vogt, S., Elmore, D,. and Lipschutz, M. E. Chemical studies of H chondrites 5. Temporal variations of sources. J. Geophys. Res. 100, 3317–3333 (1995).

    Article  ADS  Google Scholar 

  • Neupert, U. Michel, R., Leya, I., Neumann, S., Schultz, L., Scherer, P., Bonani, G., Hajdas, I., Ivy-Ochs, S., Kubik, P. W, and Suter, M. Ordinary chondrites from the Açfer region: A study of exposure histo-ries. Meteor. Planet. Sci. 32, A98–99 (1997).

    Google Scholar 

  • Ninagawa, K., Miono, S., Yoshida, M., and Takaoka, N. Measurement of terrestrial age of Antarctic meteorites by thermoluminescence technique. Mem. Nat. Inst. Polar Res., Tokyo, Spec. Issue 30, 251–258 (1983).

    Google Scholar 

  • Nishiizumi, K. Terrestrial ages of meteorites from cold and hot deserts. Lunar Planet. Inst. Techn. Rept. 95-02,53–55(1995).

    Google Scholar 

  • Nishiizumi, K. and Caffee, M. W. Measurement of cosmogenic calcium-41 and calcium41/chlorine-36 terrestrial ages. Meteor. Planet. Sci. 33, A117 (1998).

    Google Scholar 

  • Nishiizumi, K., Arnold, J. R., Elmore, D., Ferrara, R. D., Gove, H. E., Finkel, R. C, Beukens, R. P., Chang, K. H., and Kilius, L. R. Measurements of 36C1 in Antarctic meteorites and Antarctic ice using a van de Graaff accelerator. Earth Planet. Sci. Lett. 45, 285–292 (1979).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Murrell, M. T., Arnold, J. R., Elmore, D., Ferraro, R. D., Gove, H. E., and Finkel, R. C. Cosmic ray produced 36C1 and 53Mn in Allan Hills-77 meteorites. Earth Planet. Sci. Lett. 52, 31–38 (1981).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Arnold, J. R., Elmore, D., Ma, X., Newman, D., and Gove, H. E. 36C1 and 53Mn in Antarctic meteorites and l0Be-36Cl dating of Antarctic ice. Earth Planet. Sci. Lett. 62, 407–417(1983).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Elmore, D., and Kubik, P. W. Update on terrestrial ages of Antarctic meteorites. Earth Planet. Sci. Lett. 93, 299–313 (1989a).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Jull, A. J. T., Bonani, G., Suter, M., Wölfli W, Elmore, D., Kubik, P., and Arnold, J. R. Age of Allan Hills 82102, a meteorite found inside the ice. Nature 340, 550–551 (1989b).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Arnold, J. R., Klein, J., Fink, D., Middleton, R., Kubik, P. W, Sharma, P., Elmore, D., and Reedy, R. C. Exposure histories of lunar meteorites: ALHA81005, MAC88104, MAC88105 and Y791197. Geochim. Cosmochim. Acta 55, 3149–3155 (1991a).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Kohl, C. P., Shoemaker, E. M., Arnold, J. R., Klein, J., Fink, D., and Middleton, R. ln-situ 10Be-26Al exposure ages at Meteor Crater, Arizona. Geochim. Cosmochim. Acta 55, 2699–2703 (1991b).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Caffee, M. W., Jeannot, J.-R, and Laveille, B. A systematic study of the cosmic-ray exposure history of iron meteorites: 10Be-36Cl/10Be terrestrial ages Meteor. Planet. Sci. 32, A100–A100 (1997).

    Google Scholar 

  • Nishiizumi, K., Caffee, M. W., and Welten, K. C. Terrestrial ages of Antarctic meteorites—update 1999. Lunar Planet. Inst. Techn. Rept. 997, 64 (1999).

    Google Scholar 

  • Nishio, F. and Annexstad, J. O. Studies on the ice flow in the bare ice area near the Allan Hills in Victoria Land, Antarctica.Mem. Nat. Inst. Polar Res., Tokyo, Spec. Issue 17, 1–13 (1980).

    ADS  Google Scholar 

  • Phillips, F. M, Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., Dorn, R. I., and Roddy, D. J. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36C1 and 14C in rock varnish. Geochim. Cosmochim. Acta 55, 2695–2698 (1991).

    Article  ADS  Google Scholar 

  • Reedy, R. C. A model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides.J. Geophys. Res. 90, C722–C728 (1985)

    ADS  Google Scholar 

  • Reedy, R. C. and Arnold, J. R. Interaction of solar and galactic cosmic ray particles with the Moon. J. Geophys. Res. 77, 537–555 (1972).

    Article  ADS  Google Scholar 

  • Reedy, R. C. and Masarik, J. Production profiles of nuclides by galactic-cosmic-ray particles in small mete-oroids. Lunar Planet. Inst. Techn. Rept. 95-02, 55–57 (1995).

    Google Scholar 

  • Ruhm, W., Schneck, B., Knie, K., Korschinek, G., Zerle, L., Nolte, E., Weselka, D., and Vonach, H. A new half life determination of Ni-59. Planet. Space. Sci. 42, 227–230 (1994).

    Article  ADS  Google Scholar 

  • Sarafin, R., Bourot-Denise, M., Crozaz, G., Herpers, U, Pellas, P., Schultz, L., and Weber, H. W. Cosmic ray effects in the Antarctic meteorite A78084. Earth Planet. Sci. Lett. 73, 171–182 (1985).

    Article  ADS  Google Scholar 

  • Scherer, P., Schultz, L., Neupert, U., Knauer, M., Neumann, S., Leya, I., Michel, R., Mokos, I, Lipschutz, M. E., Metzler, K., Suter, M., and Kubik, P. W. Allan Hills 88019: An Antarctic H-chondrite with a very long terrestrial age. Meteor. Planet. Sci. 3, 769–773 (1997).

    Article  ADS  Google Scholar 

  • Scott, E. R. D., McKinley, S. G., Keil, K., and Wilson, I. E. Recovery and classification of thirty new mete-orites from Roosevelt County, New Mexico. Meteoritics 21, 303–309 (1986).

    ADS  Google Scholar 

  • Sipiera, P. P., Becker, M. I., and Kawachi, Y. Classification of twenty-six chondrites from Roosevelt County, New Mexico. Meteoritics 22, 151–155 (1987).

    ADS  Google Scholar 

  • Sisterson, J. M., Jull, A. J. T., Beverding, A., Koehler, A. M., Castaneda, C, Vincent, J., Donahue, D. X, Englert, P. A. X, Gans, C, Young, X, and Reedy, R. C. Revised solar cosmic ray fluxes estimated using measured depth profiles of 14C in lunar rocks: The importance of good cross section measurements. Nucl. Instrum. Methods Phys. Res. B92, 510–512 (1994).

    ADS  Google Scholar 

  • Schnabel, C, Pierazzo, E., Xue, S., Herzog, G. F., Masarik, X, Cresswell, R. G., di Tada, M. I., Liu, K., and Fifield, L. K. Shock melting of the Canyon Diablo impactor: Constraints from nickel-59 contents and numerical modeling. Science 285, 85–88 (1999).

    Article  ADS  Google Scholar 

  • Schultz, L. and Franke, L. He, Ne, and Ar in meteorites: A data compilation. Max-Planck Institut für Chemie, Mainz. Excel file (2000).

    Google Scholar 

  • Spencer, L. J. Hoba (South-West Africa), the largest known meteorite. Mineral. Mag. 23, 1–8 (1932).

    Article  Google Scholar 

  • Stelzner, T., Heide, K, Bischoff, A., Weber, D., Scherer, P., Schultz, L., Happel, M., Schrön, W., Neupert, U., Michel, R., Clayton, R. N., Mayeda, T. K., Bonani, G., Ivy-Ochs, S., and Suter, M. An interdisciplinary study of weathering effects in ordinary chondrites from the Açfer region, Algeria. Meteor. Planet. Sci. 34, 787–794 (1999).

    Article  ADS  Google Scholar 

  • Suess, H. and Wanke, H. Radiocarbon content and terrestrial age of 12 stony meteorites and one iron meteorite. Geochim. Cosmochim. Acta 26, 475–480 (1962).

    Article  ADS  Google Scholar 

  • Thalmann, C, Eugster, O., Herzog, G. F., Klein, X, Krähenbühl, U, Vogt, S., and Xue, S. History of lunar meteorites Queen Alexandra Range 93069, Asuka 881757 and Yamato 793169 based on noble gas iso-topic abundances, radionuclide concentrations and chemical composition. Meteor. Planet. Sci. 31, 857–868 (1996).

    Article  ADS  Google Scholar 

  • Tuniz, C, Bird, J. R., Fink, D., and Herzog, G. F. Accelerator mass spectrometry: Ultrasensitive analysis for global science. CRC Press, Boca Raton, 371 pp. (1998).

    Google Scholar 

  • Velbel, M., Long, D. T., and Gooding, X L. Terrestrial weathering of Antarctic stone meteorites formation of Mg-carbonates on ordinary chondrites. Geochim. Cosmochim. Acta 55, 67–76 (1991).

    Article  ADS  Google Scholar 

  • Vogt, S., Herzog, G. F., and Reedy, R. C. Cosmogenic nuclides in extraterrestrial materials. Rev. Geophys. 28, 253–275 (1990).

    Article  ADS  Google Scholar 

  • Wacker, J. F. 26A1 activity data for Antarctic meteorites. Antarc. Meteor. Newslett. 15(2), 36 (1992).

    Google Scholar 

  • Wacker, J. F. 26A1 activity data for Antarctic meteorites. Antarc. Meteor. Newslett. 16(2), 23 (1993).

    Google Scholar 

  • Wacker, J. F. 26A1 activity data for Antarctic meteorites. Antarc. Meteor. Newslett. 18(1), 18 (1995).

    Google Scholar 

  • Weigel, A., Eugster, O., Koeberl, C, Michel, R., Krähenbühl, U, and Neumann, S. Relationships among lodranites and acapulcoites: Noble gas isotopic abundances, chemical composition, cosmic-ray exposure ages, and solar cosmic ray effects. Geochim. Cosmochim. Acta 63, 175–192 (1999).

    Article  ADS  Google Scholar 

  • Welten, K. C, Alderliesten, C, van der Borg, K., Lindner, L., Loeken, T., and Schultz, L. Lewis Cliff 86360: An Antarctic L-chondrite with a terrestrial age of 2.35 million years. Meteor. Planet. Sci., 32, 775–780 (1997).

    Article  ADS  Google Scholar 

  • Welten, K. C, Linder, L., Alderliesten, C, and van der Borg, K. Terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica. Meteor. Planet Sci. 34, 559–569 (1999)

    Article  ADS  Google Scholar 

  • Welten, K. C, Nishiizumi, K., Masarik, J., Caffee, M. W, Jull, A. J. T., Klandrud, S. E., and Wieler, R. Cosmic-ray exposure history of two Frontier Mountain H-chondrite showers from spallation and neutron-capture products. Meteor. Planet. Sci. 36, 301–317 (2000).

    Article  ADS  Google Scholar 

  • Wieler, R., Graf, T., Signer, P., Vogt, S., Herzog, G. F., Tuniz, C, Fink, D., Fifield, L. K., Klein, I, Middleton, R., Jull, A. J. T., Pellas, P., Masarik, I, and Dreibus, G. Exposure history of the Torino meteorite. Meteor. Planet. Sci. 31, 265–272 (1996).

    Article  ADS  Google Scholar 

  • Wlotzka, F., Jull, A. J. T., and Donahue, D. J. Carbon-14 terrestrial ages of meteorites from Açfer, Algeria. Workshop on meteorites from cold and hot deserts. Lunar Planet, lnst. Techn. Rept. 95-02, 72–73 (1995).

    Google Scholar 

  • Zolensky, M. E. The flux of meteorites to Antarctica. Geol. Soc. Lond., Spec. Publ. 140, 93–104 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jull, A.J.T. (2001). Terrestrial Ages of Meteorites. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics