Cosmic Ray Exposure History of Meteorites

  • Rainer Wieler
  • Thomas Graf


The cosmic ray exposure age of a meteorite is the time it spent as a roughly meter- sized object in interplanetary space. Exposure age distributions are relevant to evaluate the influx of matter to Earth and its time dependence. We review here exposure ages of the major meteorite classes derived from the asteroid belt and discuss briefly also meteorites from the Moon and Mars. The data allow us to estimate the number of meteorite-producing impact events and provide important constraints for dynamical models of meteorite delivery to Earth. Given the myriad of potential meteorite parent asteroids, a perhaps astonishingly large fraction of all meteorites originates in a small number of collisions on even fewer parent bodies. Our sampling of asteroidal material is therefore highly incomplete and the proportion of certain meteorite types in fall statistics will change on time scales on the order of 0.1–100 Myr. The transfer times of lunar meteorites to Earth are much shorter than for Martian meteorites. It is not well understood why we do not have substantially more meteorites from the Moon than from Mars.


Parent Body Carbonaceous Chondrite Iron Meteorite Ordinary Chondrite Asteroid Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begemann, F., Geiss, J., and Hess, D. C. Radiation age of a meteorite from cosmic-ray-produced 3He and 3H. Phys. Rev. 107, 540–542 (1957).ADSCrossRefGoogle Scholar
  2. Begemann, F., Fan, C. Y., Weber, H. W., and Wang, X. B. Light noble gases in Jilin: More of the same and something new. Meteor. Planet. Sci. 31, 667–674 (1996).ADSCrossRefGoogle Scholar
  3. Bogard, D. D. Impact ages of meteorites: A synthesis. Meteoritics 30, 244–268 (1995).ADSGoogle Scholar
  4. Bottke, W. F., Rubincam, D. P., and Burns, J. A. Dynamical evolution of main belt meteoroids: Numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus 145, 301–331 (2000).ADSCrossRefGoogle Scholar
  5. Caffee, M. W. and Nishiizumi, K. Exposure ages of carbonaceous chondrites: 11. Meteor. Planet. Sci. 32, A26(1997).Google Scholar
  6. Crabb, J. and Schultz, L. Cosmic-ray exposure ages of the ordinary chondrites and their significance for parent body stratigraphy. Geochim. Cosmochim. Acta 45, 2151–2160 (1981).ADSCrossRefGoogle Scholar
  7. Eberhardt, P., Eugster, O., and Geiss, J. Radiation ages of aubrites. J. Geophys. Res. 70 (18), 4427–4434 (1965).ADSCrossRefGoogle Scholar
  8. Eugster, O. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and l26Xe in chondrites based on 81Kr-Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).ADSCrossRefGoogle Scholar
  9. Eugster, O. and Michel, T. Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochim. Cosmochim. Acta 59, 177–199 (1995).ADSCrossRefGoogle Scholar
  10. Eugster, O., Weigel, A., and Polnau, E. Ejection times of Martian meteorites. Geochim. Cosmochim. Acta 61, 2749–2757(1997).ADSCrossRefGoogle Scholar
  11. Garrison, D. H., Bogard, D. D., Albrecht, A. A., Vogt, S., Herzog, G. F., Klein, X, Fink, D., Dezfouly-Arjomandy, B., and Middleton, R. Cosmogenic nuclides in core samples of the Chico L6-chondrite-evidence for irradiation under high shielding. Meteoritics 27, 371–38 (1992).ADSGoogle Scholar
  12. Gladman, B. Destination: Earth. Martian meteorite delivery. Icarus 130, 228–246 (1997).ADSCrossRefGoogle Scholar
  13. Gladman, B. J., Burns, J. A., Duncan, M., Lee, P., and Levison, H. F. The exchange of impact ejecta between terrestrial planets. Science 271, 1387–1392 (1996).ADSCrossRefGoogle Scholar
  14. Gladman, B. J., Migliorini, F., Morbidelli, A., Zappalà, V, Michel, P., Cellino, A., Froeschlé, C, Levison, H. F., Bailey, M., and Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).ADSCrossRefGoogle Scholar
  15. Graf, T. and Marti, K. Collisional records in LL-chondrites. Meteoritics 29, 643–648 (1994).ADSGoogle Scholar
  16. Graf, T. and Marti, ft Collisional history of H chondrites. J. Geophys. Res.—Planets 100, 21,247–21,263 (1995).ADSCrossRefGoogle Scholar
  17. Graf, T., Caffee, M. W, Marti, K., Nishiizumi, K., and Ponganis, K. V Dating collisional events: 36Cl-36Ar exposure ages of chondritic metals. Icarus, in press (2000).Google Scholar
  18. Greenberg, R. and Chapman, C. R. Asteroids and meteorites: Parent bodies and delivered samples. Icarus 55, 455–481 (1983).ADSCrossRefGoogle Scholar
  19. Heide, F. and Wlotzka, F. Meteorites, messengers from space. Springer, Berlin Heidelberg, 241 pp. (1995).Google Scholar
  20. Herzog, G. F., Vogt, S., Albrecht, A., Xue, S., Fink, D., Klein, I, Middleton, R., Weber, H. W., and Schultz, L. Complex exposure histories for meteorites with short exposure ages. Meteor. Planet. Sci. 32, 413–422(1997).ADSCrossRefGoogle Scholar
  21. Heusser, G., Ouyang, Z., Oehm, J., and Yi, W. Aluminum-26, sodium-22 and cobalt-60 in two drill cores and some other samples of the Jilin chondrite. Meteor. Planet. Sci. 31, 657–665 (1996).ADSCrossRefGoogle Scholar
  22. Housen, K. R., Holsapple, K. A., and Voss, M. E. Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155–157 (1999).ADSCrossRefGoogle Scholar
  23. Keil, K., Haack, H., and Scott, E. R. D. Catastrophic fragmentation of asteroids: Evidence from meteorites. Planet. Space Sci. 42, 1109–1122 (1994).ADSCrossRefGoogle Scholar
  24. Lavielle, B., Regnier, S., and Marti, K. Ages d’exposition des méteorites de fer: Histoires multiples et variations d’intensité du rayonnement cosmique. In Isotopic ratios in the solar system. Cepadues-Editions, Toulouse, 15–20 (1985).Google Scholar
  25. Lavielle, B., Marti, K., Jeannot, J. P., Nishiizumi, K., and Caffee, M. The Cl-36-Ar-36-K-40-K-41 records and cosmic ray production rates in iron meteorites. Earth Planet. Sci. Lett. 170, 93–104 (1999).ADSCrossRefGoogle Scholar
  26. Lavielle, B., Gilabert, E., Marti, K., Nishiizumi, K., and Caffee, M. W. Collisional history in irons: Interpreting the cosmic ray record. Meteor. Planet. Sci. 35, A96 (2000).Google Scholar
  27. Leya, I., Lange, H.-J., Neumann, S., Wieler, R., and Michel, R. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic ray particles. Meteor. Planet. Sci. 35, 259–286 (2000).ADSCrossRefGoogle Scholar
  28. Lodders, K. and Osborne, R. Perspectives on the comet-asteroid-meteorite link. Space Sci. Rev. 90, 289–297 (1999).ADSCrossRefGoogle Scholar
  29. Marti, K. Mass-spectrometric detection of cosmic-ray-produced Kr81 in meteorites and the possibility of Kr-Kr dating. Phys. Rev. Lett. 18, 264–266 (1967).MathSciNetADSCrossRefGoogle Scholar
  30. Marti, K. and Graf, T. Cosmic-ray exposure history of ordinary chondrires. Annu. Rev. Earth Planet. Sci. 20,221–243(1992).ADSCrossRefGoogle Scholar
  31. Masarik, J. and Reedy, R. C. Effects of bulk composition on nuclide production processes in meteorites. Geochim. Cosmochim. Acta 58, 5307–5317 (1994).ADSCrossRefGoogle Scholar
  32. McSween, H. Y. Meteorites and their parent planets. Cambridge Univ. Press, 310 pp. (1999).Google Scholar
  33. Merchel, S., Altmaier, M., Faestermann, T., Herpers, U., Knie, K., Korschinek, G., Kubik, P. W., Neumann, S., Michel, R., and Suter, M. Sanaran meteorites with short or complex exposure histories. In Workshop on extraterrestrial materials from cold and hot deserts. Lunar Planet. Inst., Houston, Contrib. No 997, 53–56 (1999).Google Scholar
  34. Moniot, R. K., Kruse, T. H., Tuniz, C, Savin, W., Hall, G. S., Milazzo, T., Pal, D., and Herzog, G. F. The 2lNe production rate in stony meteorites estimated from 10Be and other radionuclides. Geochim. Cosmochim. Acta 47, 1887–1895 (1983).ADSCrossRefGoogle Scholar
  35. Nishiizumi, K., Caffee, M. W., Jull, A. J. T, and Reedy, R. C. Exposure history of lunar meteorites Queen Alexandra Range 93069 and 94269. Meteor. Planet. Sci. 31, 893–896 (1996).ADSCrossRefGoogle Scholar
  36. Nishiizumi, K., Masarik, J., Caffee, M. W., and Jull, A. J. T. Exposure histories of pair lunar meteorites EET 96008 and EET 87521. Lunar Planet. Sci. 30, 1980, CD-ROM (1999).Google Scholar
  37. Nishiizumi, K., Caffee, M. W., and Masarik, J. Cosmogenic radionuclides in the Los Angeles Martian meteorite. Meteor. Planet. Sci. 35, A120 (2000).Google Scholar
  38. Nyquist, L. E., Borg, L. E., and Shih, C. Y. The Shergottite age paradox and the relative probabilities for Martian meteorites of differing ages. J. Geophys. Res.-Planets 103, 31,445–31,455 (1998).ADSCrossRefGoogle Scholar
  39. Pellas, P. and Fiéni, C. Thermal histories of ordinary chondrite parent asteroids. Lunar Planet. Sci. 19, 915–916(1988).ADSGoogle Scholar
  40. Polnau, E. and Eugster, O. Cosmic-ray produced, radiogenic, and solar noble gases in lunar meteorites Queen Alexandra Range 94269 and 94281. Meteor. Planet. Sci. 33, 313–319 (1998).ADSCrossRefGoogle Scholar
  41. Scherer, P. and Schultz, L. Noble gas record, collisional history, and pairing of CV, CO, CK, and other carbonaceous chondrites. Meteor. Planet. Sci. 35, 145–153 (2000).ADSCrossRefGoogle Scholar
  42. Scott, E. R. D. Origin of iron meteorites. In Asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 892–925 (1979).Google Scholar
  43. Shukolyukov, Yu. A., Nazarov, M. A., and Schultz, L. Dhofar 019: A shergottite with an approximately 20 million year exposure age. Meteor. Planet. Sci. 35, A147 (2000).Google Scholar
  44. Terribilini, D., Eugster, O., Burger, M., Jakob, A., and Krähenbühl, U. Noble gases and chemical composition of Shergotty mineral fractions, Chassigny, and Yamato 793605: The trapped argon-40/argon-36 ratio and ejection times of Martian meteorites. Meteor. Planet. Sci. 33, 677–684 (1998).ADSCrossRefGoogle Scholar
  45. Vogt, S., Herzog, G. F., and Reedy, R. C. Cosmogenic nuclides in extraterrestrial materials. Rev. Geophys. 28, 253–275 (1990).ADSCrossRefGoogle Scholar
  46. Vogt, S. K., Aylmer, D., Herzog, G. F., Wieler, R., Signer, P., Pellas, P., Fiéni, C, Tuniz, C, Ml, A. J. T., Fink, D., Klein, J., and Middleton, R. On the Bur Gheluai H5 chondrite and other meteorites with complex exposure histories. Meteoritics 28, 71–85 (1993).ADSGoogle Scholar
  47. Voshage, H. Investigations on cosmic-ray-produced nuclides in iron meteorites, 2. New results on 4lK/40K-4He/21Ne exposure ages and the interpretations of age distributions. Earth Planet. Sci. Lett. 40, 83–90 (1978).ADSCrossRefGoogle Scholar
  48. Voshage, H. Investigations of cosmic-ray-produced nuclides in iron meteorites, 6. The Signer-Nier model and the history of the cosmic radiation. Earth Planet. Sci. Lett. 71, 181–194 (1984).ADSCrossRefGoogle Scholar
  49. Warren, P. H. Lunar and Martian meteorite delivery services. Icarus 111, 338–363 (1994).ADSCrossRefGoogle Scholar
  50. Wasson, J. T. Ungrouped iron meteorites in Antarctica: Origin of anomalously high abundance. Science 249, 900–902 (1990).ADSCrossRefGoogle Scholar
  51. Wetherill, G. W. Origin of the asteroid belt. In Asteroids II (Binzel, R. P., Gehrels, T., and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 661–680 (1989).Google Scholar
  52. Wetherill, G. W. and Williams, J. G. Origin of differentiated meteorites. In Origin and distribution of the elements (Ahrens, L. H., Ed.), Pergamon, Oxford, 19–31 (1979).Google Scholar
  53. Wieler, R., Graf, T., Signer, P., Vogt, S., Herzog, G. F, Tuniz, C, Fink, D., Fifield, L. K., Klein, X, Middleton, R., Jull, A. J. T., Pellas, P., Masarik, J., and Dreibus G. Exposure history of the Torino meteorite. Meteor. Planet. Sci. 31, 265–272 (1996).ADSCrossRefGoogle Scholar
  54. Wieler, R., Pedroni, A., and Leya, I. Cosmogenic neon in mineral separates from Kapoeta: No evidence for an irradiation of its parent body regolith by an early active Sun. Meteor. Planet. Sci. 35, 251–257 (2000).ADSCrossRefGoogle Scholar
  55. Wisdom, J. Chaotic behaviour and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983).ADSCrossRefGoogle Scholar
  56. Woolum, D. S. and Hohenberg, C. Energetic particle environment in the early solar system-extremely long pre-compaction meteoritic ages or an enhanced early particle flux. In Protostars and planets III (Levy, E. H. and Lunine, J. I., Eds.), Univ. Arizona Press, Tucson, 903–919 (1993).Google Scholar
  57. Yeomans, D. Small bodies of the solar system. Nature 404, 829–832 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Rainer Wieler
    • 1
  • Thomas Graf
    • 2
  1. 1.Isotope GeologyETH ZürichZürichSwitzerland
  2. 2.Pharmacology and ToxicologyUniversity of ZürichZürichSwitzerland

Personalised recommendations