Seeking Unbiased Collections of Modern and Ancient Micrometeorites

  • Susan Taylor
  • James H. Lever


Micrometeorites are sub-millimeter-sized extraterrestrial particles that survive atmospheric entry. An unbiased collection of micrometeorites should contain samples of all of the dust-producing objects in the solar system. However, because of low concentrations and rapid weathering in terrestrial environments, unbiased collections are difficult to find. Additionally, most particles have been severely heated during atmospheric entry, and the resulting changes must be understood to derive compositional information about the parent micrometeoroids. Large modern collections that can be characterized by the flux, size distribution, and micrometeorite compositional types can help constrain heating models that predict how micrometeorites are heated while entering the Earth’s atmosphere. These collections can also be used as a reference to deduce the effects of weathering on collections of ancient micrometeorites.


Accretion Rate Lunar Planet Cosmic Dust Mass Accretion Rate Magnetite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanchard, M. B., Brownlee, D. E., Bunch, T. E., Hodge, P. W., and Kyte, F. T. Meteoroid ablation spheres from deep sea sediments. Earth Planet. Sci. Lett. 46, 178–190 (1980).ADSCrossRefGoogle Scholar
  2. Bradley, J. P., Sandford, S. A., and Walker, R. M. Interplanetary dust particles. In Meteorites and the early solar system (Kerridge, J. F. and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 861–895 (1988).Google Scholar
  3. Brownlee, D. E. Extraterrestrial components. In The sea 7 (Emiliani, C, Ed.), Wiley, New York, 733–762 (1981).Google Scholar
  4. Brownlee, D. E. Cosmic dust: Collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985).ADSCrossRefGoogle Scholar
  5. Brownlee, D. E., Pilachowski, L. B., and Hodge, P. W. Meteorite mining on the ocean floor. Lunar Planet. Sci. 10, 157–158(1979).ADSGoogle Scholar
  6. Brownlee, D. E., Bates, B. A., Pilachowski, L. B., Olszewski, E., and Siegmund, W. A. Unmelted cosmic materials in deep sea sediments. Lunar Planet. Sci. 11, 109–111 (1980).ADSGoogle Scholar
  7. Brownlee, D. E., Bates, B., and Beauchamp, R. H. Meteorite ablation spherules as chondrite analogs. In Chondrules and Their Origins (King, E. A., Ed.), Lunar Planet. Inst., Houston, 10–25 (1981).Google Scholar
  8. Brownlee, D. E., Joswiak, D. J., Love, S. G., Nier, A. O., Schlutter, D. J., and Bradley, J. P. Identification of cometary and asteroidal particles in stratospheric IDP collections. Lunar Planet. Sci. 24, 205–206 (1993).ADSGoogle Scholar
  9. Brownlee, D. E., Bates, B., and Schramm, L. The elemental composition of stony cosmic spherules. Meteor. Planet. Sci. 32, 157–175 (1997).ADSCrossRefGoogle Scholar
  10. Brunn, A. F., Langer, E., and Pauly, H. Magnetic particles found by raking the deep sea bottom. Deep-Sea Res. 2, 230–246 (1955).CrossRefGoogle Scholar
  11. Castaing, R. and Fredriksson, K. Analysis of cosmic spherules with an X-ray microanalyser. Geochim. Cosmochim. Acta 14, 114–117 (1958).ADSCrossRefGoogle Scholar
  12. Crozier, W. D., Black, magnetic spherules in sediments. J. Geophys. Res. 65, 2971–2977 (1960).ADSCrossRefGoogle Scholar
  13. Czajkowski, X, Englert, P., Bosellini, A., and Ogg, J. G. Cobalt enriched hardgrounds—new sources of ancient extraterrestrial materials. Meteoritics 18, 286–287 (1983).ADSGoogle Scholar
  14. Deutsch, A., Greshake, A., Pesonen, L. J., and Pihlaja, P. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland. Nature 395, 146–148 (1998).ADSCrossRefGoogle Scholar
  15. Esser, B. K. and Turekian, K. K. The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta 57, 3093–3104 (1993).ADSCrossRefGoogle Scholar
  16. Flynn, G. J. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989).ADSCrossRefGoogle Scholar
  17. Fredriksson, K. and Gowdy, R. Meteoritic debris from the southern California desert. Geochim. Cosmochim. Acta 27, 241–243 (1963).ADSCrossRefGoogle Scholar
  18. Ganapathy, R., Brownlee, D. E., and Hodge, P. W. Silicate spherules from deep-sea sediments: Confirmation of extraterrestrial origin. Science 201, 1119–1121 (1978).ADSCrossRefGoogle Scholar
  19. Genge, M. J. and Grady, M. M. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteor. Planet. Sci. 34, 341–356 (1999).ADSCrossRefGoogle Scholar
  20. Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G. J., Bajt, S., and Bischoff, A. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteor. Planet. Sci. 33, 267–290 (1998).ADSCrossRefGoogle Scholar
  21. Grün, E., Zook, H. A., Fechtig, H., and Geise, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).ADSCrossRefGoogle Scholar
  22. Hagen, E. H., Koeberl, C, and Faure, G. Extraterrestrial spherules in glacial sediment, Beardmore Glacier area, Transantarctic Mountain. Antarctic Res. Ser. 50, 19–24, (1990).CrossRefGoogle Scholar
  23. Harvey, R. P. and Maurette, M. The origin and significance of cosmic dust from the Wolcott Neve, Antarctica. Proc. Lunar Planet. Sci. Conf. 21, 569–578 (1991).ADSGoogle Scholar
  24. Hashimoto, A. Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primative materials. Geochem. J. 17, 111–145(1983).CrossRefGoogle Scholar
  25. Hughes, D. W. Meteors. In Cosmic dust (McDonnell, J. A. M., Ed.), Wiley, Chichester, 123–185 (1978).Google Scholar
  26. Jehanno, C, Boclet, D., Bonte, Ph., Castellarin, A., and Rocchia, R. Identification of two populations of extraterrestrial particles in a Jurassic hardground of the Southern Alps. Proc. Lunar Planet. Sci. Conf. 18, 623–630 (1988).ADSGoogle Scholar
  27. Koeberl, C. and Hagen, E. H. Extraterrestrial spherules in glacial sediment from the Transantarctic Mountains, Antarctica: Structure, mineralogy and chemical composition. Geochim. Cosmochim. Acta 53, 937–944(1989).ADSCrossRefGoogle Scholar
  28. Kyte, F. T. Analyses of extraterrestrial materials in terrestrial sediments. Ph.D. thesis, Univ. California, Los Angeles, 152 pp. (1983).Google Scholar
  29. Kyte, F. T. and Wassou, J. T. Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1229 (1986).ADSCrossRefGoogle Scholar
  30. Laevastu, T. and Mellis, O. Extraterrestrial material in deep-sea deposits. Trans. AGU 36, 385–389 (1955).Google Scholar
  31. Langway, C. C. Sampling for extra-terrestrial dust on the Greenland Ice Sheet. Union Geodesique et Geophysique Internationale, Association Internationale d’Hydrologie Scientific. Berkeley Symposium 61, 189–197(1963).Google Scholar
  32. Love, S. G and Brownlee, D. E. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89, 26–43 (1991).ADSCrossRefGoogle Scholar
  33. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).ADSCrossRefGoogle Scholar
  34. Marvin, V. B. and Einaudi, M. T. Black magnetic spherules from Pleistocene beach sands. Geochim. Cosmochim. Acta 31, 1871–1884 (1967).ADSCrossRefGoogle Scholar
  35. Maurette, M., Hammer, C, Brownlee, D. E., Reeh, N., and Thomsen, H. H. Placers of cosmic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986).ADSCrossRefGoogle Scholar
  36. Maurette, M., Jehanno, C, Robin, E., and Hammer, C. Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap. Nature 328, 699–702 (1987).ADSCrossRefGoogle Scholar
  37. Maurette, M., Hammer, C, and Pourche, M. Multidisciplinary investigations of new collections of Greenland and Antarctica micrometeorites. In From mantle to meteorites (Gopalan, Gaur, Somayajulu, and MacDougall, Eds.), Indian Acad. Sci., Bangalore, 87–126 (1990).Google Scholar
  38. Maurette, M., Olinger, C, Christophe Michel-Levy, M., Kurat, G., Pourchet, M, Brandstatter, F., and Bourot-Denise, M. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44–47 (1991).ADSCrossRefGoogle Scholar
  39. Maurette, M., Kurat, G., Perreau, M., and Engrand, C. Microanalyses of Cap-Prudhomme Antarctic micrometeorites. Microbeam Anal. 2, 239–251 (1993).Google Scholar
  40. Millard, H. T. and Finkelman, R. B. Chemical and mineralogical compositions of cosmic and terrestrial spherules from a marine sediment.J. Geophys. Res. 75, 2125–2133 (1970).ADSCrossRefGoogle Scholar
  41. Murray, J. On the distribution of volcanic debris over the floor of the ocean—its character, source, and some of the products of its disintegration and decomposition. Proc. R. Soc. Edinburgh 9, 247–261 (1876).Google Scholar
  42. Murray, J. and Renard, A. F. On the microscopic characters of volcanic ashes and cosmic dust, and their distribution in deep-sea deposits. Proc. R. Soc. Edinburgh 12, 474–495 (1883).Google Scholar
  43. Murray, I and Renard, A. F. Report on the scientific results of the voyage of H. M. S. Challenger during the years 1873-76, Deep-Sea Deposits, 327–336 (1891).Google Scholar
  44. Murrell, M. T., Davis, P. A., Nishiizumi, K., and Millard, H. T. Deep-sea spherules from Pacific clay: Mass distribution and influx rate. Geochim. Cosmochim. Acta 44, 2067–2074 (1980).ADSCrossRefGoogle Scholar
  45. Mutch, T. A. Abundance of magnetic spherules in Silurian and Permian salt samples. Earth Planet. Sci. Lett. 1, 325–329, (1966).ADSCrossRefGoogle Scholar
  46. Nier, A. O. Helium and neon in interplanetary dust particles. InAnalysis of interplanetary dust (Zolensky, M. E., Wilson, T. L., Rietmeijer, F. J. M., and Flynn, G. J., Eds.), Am. Inst. Phys., 115–126 (1994).Google Scholar
  47. Nishiizumi, K. Measurement of 53Mn in deep-sea iron and stony spherules. Earth Planet. Sci. Lett. 63, 223–228,(1983).ADSCrossRefGoogle Scholar
  48. Nishiizumi, K., Arnold, J. R., Brownlee, D. E., Caffe, M. W., Ginkel, R. C, and Harvey, R. P. 10Be and 26A1 in individual cosmic spherules from Antarctica. Meteoritics 30, 728–732 (1995).ADSGoogle Scholar
  49. Peng, H. and Lui, Z. Measurement of the annual flux of cosmic dust in deep-sea sediments. Meteoritics 24, 315(1989).ADSGoogle Scholar
  50. Pettersson, H. and Fredriksson, K. Magnetic spherules in deep sea deposits. Pacific Sci. 12, 71–81, (1958).Google Scholar
  51. Peucker-Ehrenbrink, B. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 60, 3187–3196 (1996).Google Scholar
  52. Peucker-Ehrenbrink, B. and Ravizza, G. The effects of sampling artifacts on cosmic dust flux estimates: A re-evaluation of non-volatile tracers (Os, Ir). Geochim. Cosmochim. Acta 64, 1965–1970 (2000)ADSCrossRefGoogle Scholar
  53. Raisbeck, G. M., Yiou, F., Bourles, D., and Maurette, M. 10Be and 26A1 in Greenland cosmic spherules: Evidence for irradiation in space as small objects and a probable cometary origin. Meteoritics 21, 487–488 (1986).ADSGoogle Scholar
  54. Robin, E., Bonte, Ph., Fraget, L., Jehanno, C, and Rocchia, R. Formation of spinels in cosmic objects during atmospheric entry: A clue to the Cretaceous-Tertiary boundary event. Earth Planet. Sci. Lett. 108, 181–190(1992).ADSCrossRefGoogle Scholar
  55. Smales, A. A., Mapper, D., and Wood, A. J. Radioactivation analysis of “cosmic” and other magnetic spherules. Geochim. Cosmochim. Acta 13, 123–126 (1958).ADSCrossRefGoogle Scholar
  56. Taylor, S. and Brownlee, D. E. Cosmic spherules in the geologic record. Meteoritics 26, 203–211 (1991).ADSGoogle Scholar
  57. Taylor, S., Lever, J. H., and Harvey, R. P., and Govoni, J. Collecting micrometeorites from the South Pole water well. CRREL Rept. 97-1. Cold Regions Research and Engineering Laboratory, Hanover, 37 pp. (1997).Google Scholar
  58. Taylor, S., Lever, J. H., and Harvey, R. P Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 899–903 (1998).ADSCrossRefGoogle Scholar
  59. Taylor, S., Lever, J. H., and Harvey, R. P. Numbers, types and compositions of an unbiased collection of cosmic spherules. Meteor. Planet. Sci. 35(4) 651–666 (2000).ADSCrossRefGoogle Scholar
  60. Thiel, E. and Schmidt, R. A. Spherules from the Antarctic ice cap. J. Geophys. Res. 66, 307–310 (1961).ADSCrossRefGoogle Scholar
  61. Tuncel, G. and Zoller, W. H. Atmospheric indium at the South Pole as a measure of the meteoritic component. Nature 329, 703–705 (1987).ADSCrossRefGoogle Scholar
  62. Wulfing, E. A. Beitrag zur Kenntniss des Kryokonit. Neues Jb. Mineral. 7, 152–174, (1890).Google Scholar
  63. Xue, S., Herzog, G. F., Hall, G. S., Bi, D., and Brownlee, D. E. Nickel isotope abundances of I-type deep-sea spheres and of iron-nickel spherules from sediments in Alberta, Canada. Geochim. Cosmochim. Acta 59, 4975–4981 (1995).ADSCrossRefGoogle Scholar
  64. Yiou, F. and Raisbeck, G. M. Cosmic spherules from an Antarctic ice core. Meteoritics 22, 539–540 (1987).ADSGoogle Scholar
  65. Yiou, F., Raisbeck, G. M., and Jehanno, C. Influx of cosmic spherules to the Earth during the last ∼105 years as deduced from concentrations in Antarctic ice cores. Meteoritics 24, 344 (1989).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Susan Taylor
    • 1
  • James H. Lever
    • 1
  1. 1.USA Cold Regions Research and Engineering LaboratoryHanoverUSA

Personalised recommendations