Iridium and Osmium as Tracers of Extraterrestrial Matter in Marine Sediments

  • Bernhard Peucker-Ehrenbrink


Platinum group elements, specifically iridium and osmium, are the most sensitive non-volatile elemental tracers of extraterrestrial (meteoritic) matter in marine sediments. The budget of these elements in sediments can be considered a mixture of extraterrestrial, eolian (i.e., wind-blown dust), and hydrogenous (i.e., seawater-derived) sources. Differences in the osmium isotopic composition between these three sources allow quantification of the amount of extraterrestrial osmium in sediments. Osmium isotope data for about 30 pelagic sediments from the Atlantic and Pacific oceans, spanning the past 80 Myr, yield an average annual flux of extraterrestrial matter of 30,000 ± 15,000 metric tons. The only clear exception is the large impact at the Cretaceous-Tertiary boundary. Temporal resolution of these flux estimates is limited to at least several thousand years by the need to obtain statistically representative samples. The scatter in the flux estimates is large and secular variations in the flux of less than a factor of about three cannot be excluded. However, samples from individual cores indicate that the flux of extraterrestrial matter has varied by less than a factor of two, if the flux is averaged over the scale of temporal resolution in marine sediment samples.


Marine Sediment Platinum Group Element Flux Estimate Mass Accumulation Rate Matter Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  2. Anbar, A. D., Wasserburg, G. J., Papanastassiou, D. A., and Andersson, P. S. Iridium in natural waters. Science 273, 1524–1528 (1996).ADSCrossRefGoogle Scholar
  3. Anders, E. and Grevesse, N. Abundances of the elements: Meteorite and solar. Geochim. Cosmochim. Acta 53, 197–214(1989).ADSCrossRefGoogle Scholar
  4. Barker, J. L. and Anders, E. Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments. Geochim. Cosmochim. Acta 32, 627–645 (1968).ADSCrossRefGoogle Scholar
  5. Barnes, S. J., Naldrett, A. J., and Gorton, M. P. The origin of the fractionation of platinum group elements in terrestrial magmas. Chem. Geol. 53, 303–323 (1985).CrossRefGoogle Scholar
  6. Bibron, R., Chesselet, R., Crozaz, G., Leger, G., Mennessier, J. P., and Picciotto, E. Extraterrestrial 53Mn in Antarctic ice. Earth Planet. Sci. Lett. 21, 109–116 (1974).ADSCrossRefGoogle Scholar
  7. Brocas, J. and Picciotto, E. Nickel content of Antarctic snow: Implications of the influx rate of extraterrestrial dust. J. Geophys. Res. 72, 2229–2236 (1967).ADSCrossRefGoogle Scholar
  8. Brook, E. J., Kurz, M. D., Curtice, X, and Cowburn, S. Accretion of interplanetary dust in polar ice. Geophys. Res. Lett. 27, 3145–3148 (2000).ADSCrossRefGoogle Scholar
  9. Brownlee, D. E., Bates, B. A., and Wheelock, M. M. Extraterrestrial platinum group nuggets in deep-sea sediments. Nature 309, 693–695 (1984).ADSCrossRefGoogle Scholar
  10. Colodner, D. C, Boyle, E. A., Edmond, J. M., and Thomson, J. Post-depositional mobility of platinum, iridium and rhenium in marine sediments. Nature 358, 402–404 (1992).ADSCrossRefGoogle Scholar
  11. Dyer, B. D., Lyalikova, N. N., Murray, D., Doyle, M., Kolesov, G. M, and Krambein, W. E. Role of microorganisms in the formation of iridium anomalies. Geology 17, 1036–1039 (1989).ADSCrossRefGoogle Scholar
  12. Esser, B. K. and Turekian, K. K. Accretion rate of extraterrestrial particles determined from osmium isotope systematics of Pacific pelagic clay and manganese nodules. Geochim. Cosmochim. Acta 52, 1383–1388 (1988).ADSCrossRefGoogle Scholar
  13. Farley, K. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376, 153–156(1995).ADSCrossRefGoogle Scholar
  14. Farley, K. A., Love, S. G., and Patterson, D. B. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  15. Goldschmidt, V M. Geochemistry. (Muir, A., Ed.), Clarendon Press, Oxford, 730 pp. (1954).Google Scholar
  16. Hertogen, J., Janssens, M. J., and Palme, H. Trace elements in ocean ridge basalt glasses: implications for fractionations during mantle evolution and petrogenesis. Geochim. Cosmochim. Acta 44, 2125–2143 (1980).ADSCrossRefGoogle Scholar
  17. Hirt, B., Tilton, G. R., Herr, W., and Hofmeister, W. The half life of l87Re. In Earth science meteoritics. (Geiss, J. and Goldberg, E., Eds.), North Holland Publ., 273–280 (1963).Google Scholar
  18. Hughes, D. W. Meteors. In Cosmic dust (McDonnell, J. A. M., Ed.), Wiley, Chichester, 123–185 (1978).Google Scholar
  19. Jochum, K. P. Rhodium and other platinum-group elements in carbonaceous chondrites. Geochim. Cosmochim. Acta 60, 3353–3357 (1996).ADSCrossRefGoogle Scholar
  20. Koide, M., Goldberg, E. D., Niemeyer, S., Gerlach, D., Hodge, V, Bertine, K. K., and Padova, A. Osmium in marine sediments. Geochim. Cosmochim. Acta 55, 1641–1648 (1991).ADSCrossRefGoogle Scholar
  21. Kyte, F. T. and Wasson, J. T. Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1229 (1986).ADSCrossRefGoogle Scholar
  22. Kyte, F. T., Leinen, M., Heath, G. R., and Zhou, L. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim. Cosmochim. Acta 57, 1719–1740(1993).ADSCrossRefGoogle Scholar
  23. Luck, J. M. and Turekian, K. K. Osmium-187/osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613–615 (1983).ADSCrossRefGoogle Scholar
  24. Marcantonio, F., Turekian, K. K., Higgins, S., Anderson, R. F., Stute, M., and Schlosser, P. The accretion rate of extraterrestrial 3He based on oceanic 230Th flux and the relation to Os isotope variation over the past 200,000 years in an Indian Ocean core. Earth Planet. Sci. Lett. 170, 157–168 (1999).ADSCrossRefGoogle Scholar
  25. Meisel, T., Krähenbühl, U., and Nazarov, M. A. Combined osmium and strontium isotopic study of the Cretaceous-Tertiary Boundary at Sumbar, Turkmenistan: A test for an impact vs. a volcanic hypothesis. Geology 23, 313–316 (1995).ADSCrossRefGoogle Scholar
  26. Meisel, T., Walker, R. X, and Morgan, X W. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520 (1996).ADSCrossRefGoogle Scholar
  27. Morgan, J. W., Wandless, G. A., Pétrie, R. K., and Irving, A. X Composition of the Earth’s upper mantle-I. Siderophile trace elements in ultramafic nodules. Tectonophysics 75, 47–67 (1981).ADSCrossRefGoogle Scholar
  28. Officer, C. B. and Drake, C. L. The Cretaceous-Tertiary transition. Science 19, 1383–1390 (1983).ADSCrossRefGoogle Scholar
  29. Pegram, W. X and Turekian, K. K. The osmium isotopic composition change of Cenozoic sea water as inferred from a deep-sea core corrected for meteoritic contributions. Geochim. Cosmochim. Acta 63, 4053–4058(1999).ADSCrossRefGoogle Scholar
  30. Pegram, W. I, Krishnaswami, S., Ravizza, G. E., and Turekian, K. K. The record of sea water l87Os/l86Os variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).ADSCrossRefGoogle Scholar
  31. Peucker-Ehrenbrink, B. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 60, 3187–3196 (1996).ADSCrossRefGoogle Scholar
  32. Peucker-Ehrenbrink, B. and Jahn, B. M. Platinum-group-element concentrations and osmium-isotopic ratios in loess: A proxy for the eroding upper continental crust? In Ninth annual V. M. Goldschmidt conference, LPI Contrib. No. 971, LPI, Houston, 224–225 (1999).Google Scholar
  33. Peucker-Ehrenbrink, B. and Hannigan, R. E. Effects of black shale weathering on the mobility of rhenium and platinum group elements. Geology 28, 475–478 (2000).ADSCrossRefGoogle Scholar
  34. Peucker-Ehrenbrink, B. and Ravizza, G. The effects of sampling artifacts on cosmic dust flux estimates: A re-evaluation of non-volatile tracers (Os, Ir). Geochim. Cosmochim. Acta 64, 1965–1970 (2000).ADSCrossRefGoogle Scholar
  35. Peucker-Ehrenbrink, B., Ravizza, G., and Hofmann, A. W. The marine l87Os/l86Os record of the past 80 million years. Earth Planet. Sci. Lett. 125, 155–167 (1995).ADSCrossRefGoogle Scholar
  36. Pettersson, H. and Rotschi, H. The nickel content of deep-sea deposits. Geochim. Cosmochim. Acta 2, 81–90(1952).ADSCrossRefGoogle Scholar
  37. Ravizza, G. and McMurtry, G. M. Osmium isotopic variations in metalliferous sediments from the East Pacific Rise and the Bauer Basin. Geochim. Cosmochim. Acta 57, 4301–4310 (1993).ADSCrossRefGoogle Scholar
  38. Ravizza, G. and Pyle, D. PGE and Os isotopic analyses of single sample aliquots with NiS fire assay pre-concentration. Chem. Geol. 141, 251–268 (1997).CrossRefGoogle Scholar
  39. Ravizza, G., Turekian, K. K., and Hay, B. J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea. Geochim. Cosmochim. Acta 55, 3741–3752 (1991).ADSCrossRefGoogle Scholar
  40. Ravizza, G., Sherrell, R. M., Field, M. P., and Pickett, E. A. Geochemistry of the Margi umbers, Cyprus, and the Os isotopic composition of Cretaceous seawater. Geology 11, 971–974 (1999).ADSCrossRefGoogle Scholar
  41. Reusch, D. N., Ravizza, G., Maasch, K. A., and Wright, J. D. Miocene seawater l87Os/l88Os ratios inferred from metalliferous carbonates. Earth Planet. Sci. Lett. 160, 163–178 (1998).ADSCrossRefGoogle Scholar
  42. Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M., and Tassinari, M. Accretion rates of meteorites and cosmic dust in the early Ordovician. Science 278, 88–90 (1997).ADSCrossRefGoogle Scholar
  43. Shirey, S. B. and Walker, R. J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Amu. Rev. Earth Planet. Sci. 26, 423–500 (1998).ADSCrossRefGoogle Scholar
  44. Taylor, S. R. and McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).ADSCrossRefGoogle Scholar
  45. Tuncel, G. and Zoller, W. H. Atmospheric iridium at the South Pole as a measure of the meteoritic component. Nature 329, 703–705 (1987).ADSCrossRefGoogle Scholar
  46. Turekian, K. K. Potential of l87Os/l86Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geol. Soc. Am., Spec. Pap. 190, 243–249 (1982).Google Scholar
  47. Turekian, K. K. and Pegram, W. J. Os isotope record in a Cenozoic deep-sea core: Its relation to global tectonics and climate. In Tectonic uplift and climate change (Ruddiman, W. F., Ed.), Plenum, New York, 384–397(1997).Google Scholar
  48. Wetherill G. W. and Shoemaker, E. M. Collision of astronomically observable bodies with the Earth. Geol. Soc. Am., Spec. Pap. 190, 1–24 (1982).Google Scholar
  49. Zhou, L. Characterization of chemical signatures in sediments: Application to selected problems. Ph.D. thesis, Univ. California, Los Angeles, 200 pp. (1990).Google Scholar
  50. Zhou, L. and Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465(1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Bernhard Peucker-Ehrenbrink
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations