The Origin and Properties of Dust Impacting the Earth

  • Donald E. Brownlee


The Earth accretes a complex variety of materials from space, currently accumulating at a rate of approximately 40,000 tons per year. The matter originates from comets, asteroids, the Moon, and the interstellar medium, although the relative contributions from these sources vary with both time and particle size. The particles from comets and asteroids are generally primitive solar system materials that are fine grained and commonly have elemental compositions close to CI chondrites. Although they are similar in elemental composition to primitive meteorites, many of the particles differ considerably in mineralogical composition. Incoming particles undergo a wide range of thermal transformation in the atmosphere depending on their size, composition, entry velocity, and entry angle. The final particulates that arrive at the Earth’s surface include 10 nm meteor condensates, cosmic spherules that totally melted during atmospheric entry, partly melted particles, and particles that survived atmospheric entry without any melting. In the terrestrial sediment environment, the particles are altered to differing degrees depending on the environment and the size and nature of the particles.


Ordinary Chondrite Lunar Planet Kuiper Belt Interplanetary Dust Hydrated Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckerling, W. and Bischoff, A. Mineralogy of micrometeorites from Greenland and Antarctica: Indications for their asteroidal origin. Lunar Planet. Sci. 26, 91 (1995a).Google Scholar
  2. Beckerling, W. and Bischoff, A. Occurrence and composition of relict minerals in micrometeorites from Greenland and Antarctica—implications for their origins. Planet. Space Sci. 43, 435–449 (1995b).ADSCrossRefGoogle Scholar
  3. Bradley, I P. Chemically anomalous pre-accretionally irradiated grains in interplanetary dust from comets. Science 265, 925(1994).ADSCrossRefGoogle Scholar
  4. Brownlee, D. E., Bates, B., and Schramm, L. The elemental composition of stony cosmic spherules. Meteor. Planet. Sci. 32, 157–175 (1997).ADSCrossRefGoogle Scholar
  5. Burns, J. A., Lamy, P. L., and Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).ADSCrossRefGoogle Scholar
  6. Deutsch, A., Greshake, A., Pesonen, L. X, and Pihlaja, P. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland. Nature 395, 146–148 (1998).ADSCrossRefGoogle Scholar
  7. Durda, D. D., Dermott, S. F., and Gustafson, B. A. S. Modeling of asteroidal dust production rates. Asteroids, comets, meteors 1991 (Bowell, E. and Harris, A., Eds.), Lunar Planet. Inst., Houston, 161–164 (1992).Google Scholar
  8. Engrand, C. and Maurette, M. Carbonaceous micrometeorites from Antarctica. Meteor. Planet. Sci. 33, 565–580 (1998).ADSCrossRefGoogle Scholar
  9. Flynn, G. J. Atmospheric entry heating—a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989a).ADSCrossRefGoogle Scholar
  10. Flynn, G. J. The near-Earth enhancement of asteroidal over cometary dust. Proc. Lunar Planet. Sci. Conf. 20, 363–371 (1989b).ADSGoogle Scholar
  11. Flynn, G. J. Cometary dust: A thermal criterion to identify cometary samples among the collected interplanetary dust. Lunar Planet. Inst., Workshop on the analysis of interplanetary dust particles, 21–22 (1994).Google Scholar
  12. Flynn, G. J. Atmospheric entry heating of large interplanetary dust particles. Meteoritics 30, 504 (1995).ADSGoogle Scholar
  13. Flynn, G. J. Collisions in the Kuiper belt and the production of interplanetary dust particles. Meteor. Planet. Sci. 31, 45 (1996a).Google Scholar
  14. Flynn, G. J. Sources of 10 micron interplanetary dust: The contribution from the Kuiper belt. ASP Conf. Ser. 104: IAU Colloq. 150: Physics, chemistry, and dynamics of interplanetary dust, 171–178 (1996b).ADSGoogle Scholar
  15. Flynn, G. X, Sutton, S. R., Bajt, S., Klock, W., Thomas, K. L., and Keller, L. P. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating? Lunar Planet. Sci. 24, 498 (1993).Google Scholar
  16. Flynn, G. X, Sutton, S. R., Kehm, K. and Hohenberg, C. M. Volatile contents of large and small inter-planetary dust particles from L2036: Comparison of zinc and helium heating indicators. Meteor. Planet. Sci. 32, 51 (1998).Google Scholar
  17. Frisch, P. C, Dorschner, X M., Geiss, X, Greenberg, J. M., Grün, E., Landgraf, M., Hoppe, P., Jones, A. P., Krätschmer, W, Linde, T. X, Morfill, G. E., Reach, W., Slavin, X D., Svestka, J., Witt, A. N., and Zank, G. P. Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999).ADSCrossRefGoogle Scholar
  18. Gaskin, X, Zook, H., and Liou, X Lunar éjecta trajectory study utilizing a Gauss-Radau integrator. Lunar Planet. Sci. 29, 1251 (1998).ADSGoogle Scholar
  19. Gladman, B. X, Burns, X A., Duncan, M. X, and Levison, H. F The dynamical evolution of lunar impact éjecta. Icarus 118, 302–321 (1995).ADSCrossRefGoogle Scholar
  20. Gounelle, M. and Kurat, G. Cometary origin for Antarctic micrometeorites: New experimental evidence. Meteor. Planet. Sci. 32, 61 (1998).Google Scholar
  21. Gounelle, M., Maurette, M., Engrand, C, Brandstätter, F., and Kurat, G. Mineralogy of the 1998 Astrolabe Antarctic micrometeorite collection. Meteor. Planet. Sci. 34, A46 (1999).Google Scholar
  22. Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G. X, Bajt, S., and Bischoff, A. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteor. Planet. Sci. 33, 267–290 (1998).ADSCrossRefGoogle Scholar
  23. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).ADSCrossRefGoogle Scholar
  24. Hunten, D. M., Turco, R. P., and Toon, O. B. Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J. Atmosph. Sci. 37, 1342–1357 (1980).ADSCrossRefGoogle Scholar
  25. Joswiak, D. J., Brownlee, D. E., Pepin, R. O., and Schlutter, D. J. Characteristics of Asteroidal and Cometary IDPs obtained from stratospheric collectors: Summary of measured He release temperatures, velocities, and descriptive mineralogy. Lunar Planet. Sci. 31, 1500 (2000).ADSGoogle Scholar
  26. Kettrup, D., Deutsch, A., Pesonen, L. I, and Bahlburg, H. Micrometeorites from the Proterozoic Satakunta sandstone, Finland; why are they preserved? Lunar Planet. Sci. 31, 1350 (2000).ADSGoogle Scholar
  27. Klock, W., Flynn, G. J., Sutton, S. R., Bajt, S., and Neuking, K. Heating experiments simulating atmospheric entry of micrometeorites. Lunar Planet. Sci. 25, 713 (1994).ADSGoogle Scholar
  28. Kortenkamp, S. J. and Dermott, S. F. Accretion of interplanetary dust particles by the Earth. Icarus 135, 469–495 (1998).ADSCrossRefGoogle Scholar
  29. Landgraf, M., Baggaley, W. I, Grün, E., Kruger, H., and Linkert, G. Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105, 10,343–10,352 (2000).ADSCrossRefGoogle Scholar
  30. Liou, J. and Zook, H. A. Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus 128, 354–367 (1997).ADSCrossRefGoogle Scholar
  31. Liou, J., Zook, H. A., and Dermott, S. F. Kuiper belt dust grains as a source of interplanetary dust particles. Icarus 124, 429–440 (1996).ADSCrossRefGoogle Scholar
  32. Love, S. G. and Brownlee, D. E. Peak atmospheric entry temperature of micrometeorites. Meteoritics 29, 69–70 (1994).ADSGoogle Scholar
  33. Messenger, S. Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000).ADSCrossRefGoogle Scholar
  34. Patterson, D. B., Farley, K. A., and Schmitz, B. Preservation of extraterrestrial 3He in 480-Ma-old marine limestones. Earth Planet. Sci. Lett. 163, 315–325 (1998).ADSCrossRefGoogle Scholar
  35. Rietmeijer, F. J. M. Interplanetary dust particles. Rev. Mineral. 36, 2–1 to 2-95 (1998).Google Scholar
  36. Taylor, S. and Brownlee, D. E. Cosmic spherules in the geologic record. Meteoritics 26, 203–211 (1991).ADSGoogle Scholar
  37. Taylor, S.,X, Lever, H., and Harvey, R. P. Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 889–903 (1998).ADSCrossRefGoogle Scholar
  38. Taylor, S. J., Lever, H., and Harvey, R. P. Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteor. Planet. Sci. 35, 651–666 (2000).ADSCrossRefGoogle Scholar
  39. Thomas, K. L., Blanford, G. E., Keller, L. P., Klock, W., and McKay, D. S. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1566 (1993).ADSCrossRefGoogle Scholar
  40. Thomas, K. L., Blanford, G. E., Clemett, S. I, Flynn, G. J., Keller, L. P., Klock, W., Maechling, C. R., McKay, D. S., Messenger, S., Nier, A. O., Schlutter, D. J., Sutton, S. R., Warren, J. L., and Zare, R. N. An asteroidal breccia: The anatomy of a cluster IDP. Geochim. Cosmochim. Acta 59, 2797–2815 (1995).ADSCrossRefGoogle Scholar
  41. Walter, J., Kurat, G., Brandstätter, F., Koeberl, C, and Maurette, M. The abundance of ordinary chondrite debris among Antarctic micrometeorites. Meteoritics 30, 592 (1995).ADSGoogle Scholar
  42. Xue, S., Shih, C, Wiesmann, H., Brownlee, D. E., Hall, G. S., Herzog, G. F., and E. Nyquist, L. Isotopic and elemental composition of chromium, iron, and nickel in type I deep-sea spheres. Lunar Planet. Sci. 28, 1595 (1997).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Donald E. Brownlee
    • 1
  1. 1.Department of AstronomyUniversity of WashingtonSeattleUSA

Personalised recommendations