Fingerprints of climate change — concluding remarks

  • Christian Körner
  • Gian-reto walther


This volume documents that ongoing climate change affects organisms. Climate change emerges as an important biodiversity issue with functional implications on the (i) species, (ii) population and community, and (iii) ecosystem level. The climatic regime of the last three decades induced changes in species ranges and behaviour more than might have been expected from the purely physical magnitude of the change, thus, leaving clear “fingerprints” of change, which might impress those, who find the 0.6 K mean global warming itself negligible.


Alpine Species Physical Magnitude Early Snowmelt Ongoing Climate Change Radial Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. IPCC, 2001a, Climate Change 2001: The scientific basis. A report of the Working Group I of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  2. IPCC, 2001b, Climate Change 2001: Impacts, adaptation and vulnerability. A report of the Working Group II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  3. Klötzli F., Walther G.-R., Carraro G. & Grundmann A., 1996, Anlaufender Biomwandel in Insubrien. Verh. Ges. Ökol. 26: 537–550.Google Scholar
  4. Klötzli F. & Walther G.-R. (eds.), 1999, Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Proceedings of the Centro Stefano Franscini, Monte Verità, Ascona. Birkhäuser, Basel, 342pp.Google Scholar
  5. Körner Ch. & Stöcklin J., 1999, Lorbeer, Bambus, Palmen in der Schweiz? Collection of student reports of a field course in Locarno of the Institute of Botany, University of Basel, Switzerland.Google Scholar
  6. Mai D.H., 1995, Tertiäre Vegetationsgeschichte Europas. Fischer, Jena, 691pp.Google Scholar
  7. Möller L, Wüthrich C. & Thannheiser D., 2001, Changes of plant community patterns, phytomass and carbon balance in a high arctic tundra ecosystem under a climate of increasing cloudiness. In: C.A. Burga & A. Kratochwil (eds.) Biomonitoring: General and applied aspects on regional and global scales. Tasks for vegetation science 35, Kluwer Academic, Dordrecht, pp. 225–242.Google Scholar
  8. Paulsen J., Weber U.M. & Körner Ch., 2000, Tree growth near treeline: Abrubt or gradual reduction with altitude? Aret. Antarct. Alp. Res. 32: 14–20.CrossRefGoogle Scholar
  9. Raich J.W. & Nadelhoffer K.J., 1989, Belowground Carbon Allocation in Forest Ecosystems: Global Trends. Ecology 70(5):1346–1354.CrossRefGoogle Scholar
  10. Stocker O., 1935, Assimilation und Atmung westjavanischer Tropenbäume. Planta 24: 402–445.CrossRefGoogle Scholar
  11. WSL & BUWAL, 2001, Lothar. Der Orkan 1999. Ereignisanalyse. Eidg. Forschungsanstalt WSL, Birmensdorf; Bundesamt für Umwelt, Wald und Landschaft BUWAL, Bern. 365pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Christian Körner
    • 1
  • Gian-reto walther
    • 2
  1. 1.Institute of BotanyUniversity of Basel Schoenbeinstr. 6BaselSwitzerland
  2. 2.Institute of GeobotanyUniversity of HannoverHannoverGermany

Personalised recommendations