Skip to main content

Broadband Modeling

  • Chapter
  • First Online:
  • 5528 Accesses

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

While time-series analysis and modeling has always been the approach used by geophysicists for studying low-frequency seismic wave propagation in the Earth’s crust, underwater acousticians have traditionally favored spectral analysis techniques, which only provide information about the band-averaged energy distribution in space. There are several reasons for choosing this approach in ocean acoustics. Most importantly, the ocean is characterized by high temporal variability, which causes strong (and unpredictable) signal fluctuations for long-range propagation at traditional sonar frequencies. At best, only the mean signal energy seems to have a predictable behavior at these frequencies. However, for some years now, the trend in sonar development has been toward lower frequencies, which should lead to both higher signal stability and better predictability. Consequently, the powerful time-series analysis techniques of geophysics may well become a valuable tool also for studying the complex propagation situations encountered in the ocean.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.E. Murphy, Finite-difference treatment of a time-domain parabolic equation: Theory. J. Acoust. Soc. Am. 77, 1958–1960 (1985)

    Article  ADS  MATH  Google Scholar 

  2. L. Nghiem-Phu, F.D. Tappert, Modeling of reciprocity in the time domain using the parabolic equation method. J. Acoust. Soc. Am. 78, 164–171 (1985)

    Article  ADS  MATH  Google Scholar 

  3. B.E. McDonald, W.A. Kuperman, Time domain formulation for pulse propagation including nonlinear behavior at a caustic. J. Acoust. Soc. Am. 81, 1406–1417 (1987)

    Article  ADS  Google Scholar 

  4. M.D. Collins, The time-domain solution of the wide-angle parabolic equation including the effects of sediment dispersion. J. Acoust. Soc. Am. 84, 2114–2125 (1988)

    Article  ADS  Google Scholar 

  5. M.D. Collins, Applications and time-domain solution of higher-order parabolic equations in underwater acoustics. J. Acoust. Soc. Am. 86, 1097–1102 (1989)

    Article  ADS  Google Scholar 

  6. M.B. Porter, The time-marched fast-field program (FFP) for modeling acoustic pulse propagation. J. Acoust. Soc. Am. 87, 2013–2083 (1990)

    Article  ADS  Google Scholar 

  7. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentice Hall, New Jersey, 1989)

    MATH  Google Scholar 

  8. H. Schmidt, G. Tango, Efficient global matrix approach to the computation of synthetic seismograms. Geophys. J. R. Astron. Soc. 84, 331–359 (1986)

    Article  ADS  Google Scholar 

  9. S. Mallick, L.N. Frazer, Practical aspects of reflectivity modeling. Geophysics 52, 1355–1364 (1987)

    Google Scholar 

  10. I. Tolstoy, Phase changes and pulse deformation in acoustics. J. Acoust. Soc. Am. 44, 675–683 (1968)

    Article  ADS  Google Scholar 

  11. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1973), pp. 235–247

    Google Scholar 

  12. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), pp. 138–141

    MATH  Google Scholar 

  13. A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (American Institute of Physics, New York, 1989)

    Google Scholar 

  14. A.N. Guthrie, R.M. Fitzgerald, D.A. Nutile, J.D. Shaffer, Long-range low-frequency CW propagation in the deep ocean: Antigua–Newfoundland. J. Acoust. Soc. Am. 56, 58–69 (1974)

    Article  ADS  Google Scholar 

  15. K.E. Hawker, A normal mode theory of acoustic Doppler effects in the oceanic waveguide. J. Acoust. Soc. Am. 65, 675–681 (1979)

    Article  ADS  MATH  Google Scholar 

  16. H. Schmidt, W.A. Kuperman, Spectral and modal representations of the Doppler-shifted field in ocean waveguides. J. Acoust. Soc. Am. 96, 386–395 (1994)

    Article  ADS  Google Scholar 

  17. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1968), pp. 364–365

    Google Scholar 

  18. J.A. Fawcett, B.H. Maranda, A hybrid target motion analysis ∕ matched-field processing localization method. J. Acoust. Soc. Am. 94, 1363–1371 (1993)

    Article  ADS  Google Scholar 

  19. M.E. Dougherty, R.A. Stephen, Seismic energy partitioning and scattering in laterally heterogeneous ocean crust. Pure Appl. Geophys. 128, 195–229 (1988)

    Article  ADS  Google Scholar 

  20. K. Aki, P.G. Richards, Quantitative Seismology (Freeman, New York, 1980), pp. 211–214

    Google Scholar 

  21. R.H. Ferris, Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water. J. Acoust. Soc. Am. 52, 981–988 (1972)

    Article  ADS  Google Scholar 

  22. F. Sturm, Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides. J. Acoust. Soc. Am. 117, 1058–1079 (2005)

    Article  ADS  Google Scholar 

  23. W.M. Ewing, W.S. Jardetzky, F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957)

    Book  MATH  Google Scholar 

  24. B. Schmalfeldt, D. Rauch, Explosion-generated seismic interface waves in shallow water: Experimental results. Rep. SR-71. SACLANT Undersea Research Centre, La Spezia, Italy, 1983

    Google Scholar 

  25. A. Dziewonski, S. Block, M. Landisman, A technique for the analysis of transient seismic signals. Bull. Seis. Soc. Am. 59, 427–444 (1969)

    Article  Google Scholar 

  26. E.L. Hamilton, Geoacoustic modeling of the seafloor. J. Acoust. Soc. Am. 68, 1313–1340 (1980)

    Article  ADS  Google Scholar 

  27. B.E. Miller, H. Schmidt, Observation and inversion of seismo-acoustic waves in a complex Arctic ice environment. J. Acoust. Soc. Am. 89, 1668–1685 (1991)

    Article  ADS  Google Scholar 

  28. R.D. Mindlin, An Introduction to Mathematical Theory of Vibration of Elastic Plates (U.S. Army Signal Corps. Engineering Laboratories, Fort Monmouth, NY, 1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn B. Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H. (2011). Broadband Modeling. In: Computational Ocean Acoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8678-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8678-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8677-1

  • Online ISBN: 978-1-4419-8678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics